全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超高压水射流形成过程中的压力损失研究

DOI: 10.11858/gywlxb.2004.02.008, PP. 139-143

Keywords: 超高压水射流,压力损失,断面收缩,喷嘴直径,水射流压力

Full-Text   Cite this paper   Add to My Lib

Abstract:

对超高压水射流形成过程中的压力损失进行了理论研究,并且对不同条件下超高压水射流速度的变化规律进行了实验研究,最后确定了不同条件下超高压水射流的初始参数。结果显示,在超高压水射流形成过程中,压力损失主要是在水流从高压管道进入高压喷嘴时由于流道发生断面收缩而造成的,压力损失大约为最终超高压水射流动能密度的49%;随着喷嘴口径的增大,压力损失减小,整个系统的能量利用率越高;随着水射流压力的增大,压力损失增大,但增大的程度会减小。

References

[1]  William D R. Equation of State Measurements of Materials Using a Three-State Gun to Impact Velocities of 11 km/s [J]. Int J Impact Eng, 2001, 26: 625-637.
[2]  Timothy G T. Computational Design of Hypervelocity Launchers [J]. Int J Impact Eng, 1995, 17: 849-860.
[3]  McGlaun J M, Thompson S L. CTH: A Three-Dimensional Shock Wave Physica Code [J]. Int J Impact Eng, 1990, 10: 351-360.
[4]  Hua J S, Jing F Q, Gong G Z, et al. Study of Numerical Simulation for Quasi-Isentropic Compression [J]. Chinese Journal of High Pressure Physics, 2000, 14 (3): 195-202. (in Chinese)
[5]  华劲松, 经福谦, 龚自正, 等. 准等熵压缩的数值模拟研究 [J]. 高压物理学报, 2000, 14 (3): 195-202.
[6]  Ma D J. Study of High Resolution Numerical Methods for Compressible/Imcompressible Interface Flows [D]. Hefei: University of science and Tecnology of China, 2002. (in Chinese)
[7]  马东军. 可压缩/不可压缩流体交界面高精度数值方法研究 [D]. 合肥: 中国科学技术大学, 2002.
[8]  Colella P, Woodward P. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations [J]. J Comput Phys, 1984, 54: 174-201.
[9]  Bai J S. High Resolution Numerical Methods and Adaptive Mesh Refinement Algorithms for Compressible Multi-Fluid Dynamics [D]. Mianyang: China Academic Engineer Physics, 2003. (in Chinese)
[10]  柏劲松. 可压缩多介质流体动力学高精度数值计算方法和网格自适应技术 [D]. 绵阳: 中国工程物理研究院, 2003.
[11]  Chhabildas L C. An Impact Technique to Accelerate Flier Plates to Velocities over 12 km/s [R]. Sandia National Laboratories, DE93 002467.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133