Spot-defect mirrors were fabricated by focusing laser pulses on the surface of conventional dielectric mirrors. These mirrors were used as rear mirrors of a He-Ne laser cavity for generating a vortex beam. The intensity distribution of the beam generated from the cavity with a spot diameter of 50? m was in excellent agreement with theory. Comprehensive analysis of the intensity distribution, the beam quality factor, and the interference pattern revealed that the beam obtained was a purely single transverse mode LG01 beam. 1. Introduction Laguerre-Gaussian (LG) beams have been highlighted due to its dominant feature of carrying optical angular momenta in singular optics [1]. They have brought about many applications such as optical spanners for driving micromachines, quantum information processing [2], super-resolution microscopy [3], and microneedle fabrication [4]. To enhance the validity of these applications, the generation of a stable and high-quality LG mode beam is inevitable. LG beams can be produced by extracavity methods such as a mode converter composed of a pair of cylindrical lenses [5], computer-generated holograms [6–8], diffractive optics [9], an adaptive helical mirror [10], and a spatial light modulator [11]. However, the misalignment and the imperfection of the optical elements gave rise to the degradation of LG beams. By contrast, direct generation from a laser cavity is expected to improve the beam quality due to an inherent feedback effect in the cavity. Although many attempts have been reported, for example, a ring-shaped beam pumping [12], the thermal lensing effect in a diode-side-pumped bounce laser cavity [13], the insertion of a spiral phase plate [14], and the use of a circular absorber [15–17], most of them have merely reported the generation of the LG beam without a detailed evaluation of the beam purity and quality. Recently, we have demonstrated the generation of LG beams from a Nd?:?yttrium aluminum garnet (YAG) laser cavity using a spot defect mirror [18]. This method is simple, robust, and applicable to many laser systems. In addition, a Gaussian mode will be strongly suppressed by properly choosing a diameter of the defect leading to the generation of a pure single transverse mode. In this paper, we demonstrate the generation of a purely single transverse mode LG beam from a He-Ne laser cavity with a spot defect mirror. For mirrors with different spot diameters, comprehensive analysis was performed for the intensity distribution, the beam quality factor, and the observed interference pattern. The generation of a
References
[1]
L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum, Institute of Physics, Bristol, UK, 2003.
[2]
S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser and Photonics Reviews, vol. 2, no. 4, pp. 299–313, 2008.
[3]
E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nature Photonics, vol. 3, no. 3, pp. 144–147, 2009.
[4]
T. Omatsu, K. Chujo, K. Miyamoto et al., “Metal microneedle fabrication using twisted light with spin,” Optics Express, vol. 18, no. 17, pp. 17967–17973, 2010.
[5]
M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Optics Communications, vol. 96, no. 1–3, pp. 123–132, 1993.
[6]
N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Optics Letters, vol. 17, no. 3, pp. 221–223, 1992.
[7]
J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer-generated holograms,” Journal of Modern Optics, vol. 45, no. 6, pp. 1231–1237, 1998.
[8]
M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Optics Communications, vol. 156, no. 4–6, pp. 300–306, 1998.
[9]
S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Physical Review A, vol. 66, no. 4, Article ID 43801, pp. 43801/1–43801/5, 2002.
[10]
D. P. Ghai, “Generation of optical vortices with an adaptive helical mirror,” Applied Optics, vol. 50, no. 10, pp. 1374–1381, 2011.
[11]
N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” Journal of the Optical Society of America A, vol. 25, no. 7, pp. 1642–1651, 2008.
[12]
Y. F. Chen and Y. P. Lan, “Dynamics of the Laguerre Gaussian mode in a solid-state laser,” Physical Review A, vol. 63, no. 6, Article ID 063807, pp. 063807/1–063807/9, 2001.
[13]
S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Applied Physics B, vol. 97, no. 2, pp. 275–280, 2009.
[14]
R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Optics Communications, vol. 169, no. 1–6, pp. 115–121, 1999.
[15]
C. Tamm, “Frequency locking of two transverse optical modes of a laser,” Physical Review A, vol. 38, no. 11, pp. 5960–5963, 1988.
[16]
L. E. Grin, P. V. Korolenko, and N. N. Fedotov, “Laser beams with a helical wavefront structure,” Optics and Spectroscopy, vol. 73, no. 5, pp. 604–605, 1992.
[17]
M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Optics Communications, vol. 106, no. 4–6, pp. 161–166, 1994.
[18]
A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” Journal of the Optical Society of America A, vol. 27, no. 9, pp. 2072–2077, 2010.