全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

发射过程中混合燃料介质内孔隙的绝热压缩

DOI: 10.11858/gywlxb.2004.03.008, PP. 237-244

Keywords: 燃料空气炸药,发射安全性,绝热压缩,战斗部

Full-Text   Cite this paper   Add to My Lib

Abstract:

燃料空气炸药武器战斗部装填的云爆剂一般是固液混合态,固液混合药剂介质内部难免存在孔隙,孔隙尺度对发射安全性有重要影响。通过对孔隙压缩物理过程的理论分析,研究孔隙尺度对混合燃料发射安全性的影响,建立了相应的判别准则,给出发射过载加速度、混合燃料介质内孔隙尺度、孔隙绝热压缩温度之间的定量关系,并提出了发射模拟装置设计应考虑战斗部内装药缺陷的有关参数,给出相应的设计依据。固液混合燃料介质内孔隙的尺度越小,其压缩产生的温度越低,抗过载能力就越强。如果圆形孔隙的直径为70μm,在发射过载加速度为100km/s2的情况下,孔隙压缩产生的最高温度约573K。将该值与固液混合药剂能够承受的临界温度进行比较,就可判断药剂在发射过载过程中的安全性。

References

[1]  Xu G G, Zhang J Y, Huang Z P. Effects of Porsity and Mechanic Properties of Explosive Charges Launching Safety [A]. Proceeding of the 1996 Autumn Seminar on Propellants, Explosives and Pyrotechnics [C]. Mianyang: China Academy of Engineering Physics, 1996. 400.
[2]  Zhou P Y, Xu G G, Wang Y Z. The Experimental Investigation about the Dynamic Response in the Backward Shock of the Explosive Charge [J]. Journal of Beijing Institute Technology, 1999, 19(s1): 92-94. (in Chinese)
[3]  周培毅, 徐更光, 王延增. 炸药装药在后座冲击下的动态响应实验研究 [J]. 北京理工大学学报, 1999, 19(s1): 92-94.
[4]  Huang Z P, Zhang J Y, Zhang H P, et al. New Criterion of Explosive Charge Launching Safety [J]. Acta Armamentarii, 1994, 8(3): 13-17. (in Chinese)
[5]  黄正平, 张景云, 张汉萍, 等. 炸药装药发射安全性新判据 [J]. 兵工学报, 1994, 8(3): 13-17.
[6]  Wang S P. The Investigation on Size Effect of Explosive under the Effect of Impact [J]. Chinese Journal of Explosive & Propellants, 2000, 23(3): 18-20. (in Chinese)
[7]  王淑萍. 撞击作用下炸药的尺寸效应研究 [J]. 火炸药学报, 2000, 23(3): 18-20.
[8]  Xiao Z Z, Tian Q Z. The Experimental Investigation in Water on the Bottom Pores of Comb-B [J]. Explosion and Shock Wave, 1995, 15(2): 141-146. (in Chinese)
[9]  肖作智, 田清政. B炸药底隙的水试验研究 [J]. 爆炸与冲击, 1995, 15 (2): 141-146.
[10]  Liu P D, Zhao Z H, Fan S Y. Probe into Launching Safety of Explosive Charge [J]. Acta Armamentari, 1994, 5(1): 44-48. (in Chinese) 刘培德, 赵壮华, 范时俊. 火炸药发射安全性问题探讨 [J]. 兵工学报(火化工分册), 1994, 5(1): 44-48.
[11]  Zhang G R. Study on Initiation of Detonation [J]. Explosion and Shock Wave, 1989, 9(2): 184-190. (in Chinese)
[12]  章冠人. 炸药起爆机理研究 [J]. 爆炸与冲击, 1989, 9(2): 184-190.
[13]  Han X P, Zhang Y C, Shen Y P, et al. Study on Microcosmic Mechanism Forming Adiabatic Sheara Area [J]. Chinese Journal of Explosives and Propellants, 1997, 19(2): 4-6. (in Chinese)
[14]  韩小平, 张元冲, 沈亚鹏, 等. B炸药中绝热剪切带形成机理的细观研究 [J]. 火炸药学报, 1997, 19(2): 4-6.
[15]  Maers T F, Hershkowitz J. The Effect of Base Gaps on Setback-Shock Sensitivities of Cast Composition B and TNT as Determined by the NSWC Setback-Shock Simulator [A]. Jacob S J. 7th Symposium (International) on Detonation [C]. Maryland (USA): Navel Surface Wepons Center, 1981: 914-923.
[16]  Starkenberg J. Ignition of Solid High Explosive by the Rapid Compression of an Adjacent Gas Layer [A]. Jacob S J. 7th Symposium (International) on Detonation [C]. Maryland (USA): Navel Surface Wepons Center, 1981: 6.
[17]  Frey R B. The Initiation of Explosive Charge by Rapid Shear [A]. Jacob S J. 7th Symposium (International) on Detonation [C]. Maryland (USA): Navel Surface Wepons Center, 1981: 36-42.
[18]  Frey R B. Cavity Collapse in Energetic Materials [A]. Lee E L, Short J M. 9th Symposium (International) on Detonation [C]. Portland, Oregon: Navel Surface Wepons Center, 1989: 68-80.
[19]  Lynch J C, Brannon J M, Delfino J J. Dissolution Rates of Three High Explosive Compounds: TNT, RDX and HMX [M]. CHEMSPHERE 4085, 2002. 1-9.
[20]  Ramsay J B, Richter H P, Bernecker R R. Comparison of Damage-Created Voids with Other Voids Types in Energetic Materials [A]. Morat W J, Short J M, Tasker D G. 10th Symposium (International) on Detonation [C]. Boston, Massachusetts: Navel Surface Wepons Center, 1993. 802-807.
[21]  Richter H P, Boyer L R, Graham K J, et al. Shock Sensitivity of Damaged Energetic Materials [A]. Lee E L, Short J M. 9th Symposium (International) on Detonation [C]. Portland, Oregon: Navel Surface Wepons Center, 1989: 1295-1300.
[22]  Bernecker R R, Clairmont A R Jr. Shock Initiation Studies of Cast, Damaged and Granulated PBXS [A]. Morat W J, Short J M, Tasker D G. 10th Symposium (International) on Detonation [C]. Boston, Massachusetts: Navel Surface Wepons Center, 1993: 499-506.
[23]  Demol G, Lambert P, Trumel H A. Study of the Microstructure of Pressed TATB and Its Evolution after Several Kinds of Solicitations [A]. Short J M, Kennedy J E. 11th Symposium (International) on Detonation [C]. Snowmass: Navel Surface Wepons Center, 1998: 404-408.
[24]  Wiegand D A. Mechanical Properties and Mechanical Failure of Composite Plastic Bonded Explosive and Other Energetic Materials [A]. Short J M, Kennedy J E. 11th Symposium (International) on Detonation [C]. Snowmass: Navel Surface Wepons Center, 1998: 85-88.
[25]  Yvonne M, Lanzerotti D, Pinto J. Fracture Surface Topography of TNT, Composition B and Octol [A]. Morat W J, Short J M, Tasker D G. 10th Symposium (International) on Detonation [C]. Boston, Massachusetts: Navel Surface Wepons Center, 1993: 190-198.
[26]  Gray G T Ⅲ, Idar D J, Blumenthal W R, et al. High-and Low-Strain Rate Compression Properties of Several Energetic Material Composites as a Function of Strain Rate and Temperature [A]. Short J M, Kennedy J E. 11th Symposium (International) on Detonation [C]. Snowmass: Navel Surface Wepons Center, 1998: 229-331.
[27]  Field J E, Parry M A, Palmer S J P, et al. Deformation and Explosive Properties of HMX Powders and Polymer Bonded Explosive [A]. Lee E L, Short J M. 9th Symposium (International) on Detonation [C]. Portland, Oregon: Navel Surface Wepons Center, 1989: 886-896.
[28]  Baer M R, Kipp M E, Swol F. Micro-Mechanical Modeling of Heterogeneous Energetic Materials [A]. Short J M, Kennedy J E. 11th Symposium (International) on Detonation [C]. Snowmass: Navel Surface Wepons Center, 1998: 65-66.
[29]  Wiegand D A, Pinto J, Nicolaids S. The Mechanical Response of TNT and a Composite, Composition B, of TNT and RDX to Compressive Stress, Ⅰ: Uniaixal Stress and Fracture [J]. J Energetic Materials, 1991, 9: 19-80.
[30]  Pinto J, Wiegand D A. The Mechanical Response of TNT and a Composite, Composition B, of TNT and RDX to Compressive Stress, Ⅱ: Triaixal Stress and Yield [J]. J Energetic Materials, 1991, 9: 205-263.
[31]  Wiegand D A, Pinto J, Nicolaids S. The Mechanical Response of TNT and a Composite, Composition B, of TNT and RDX to Compressive Stress, Ⅲ: Dependence on Processing and Composition [J]. J Energetic Materials, 1991, 9(5): 349-414.
[32]  Incropera F P, Dewitt D P . The Elementary Principle about Heat Conduction (Translated by GE Xin-Shi, Wang Yi-Fang, Guo Kuan-Liang) [M]. Hefei: Anhui Education Publishing Company, 1985: 432. (in Chinese)
[33]  英克鲁佩勒, 戴威特. 传热的基本原理(葛新石, 王义方, 郭宽良译) [M]. 合肥: 安徽教育出版社, 1985: 432.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133