全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压下液态硝基甲烷的分子动力学模拟

DOI: 10.11858/gywlxb.2004.04.006, PP. 319-327

Keywords: 高压,含能材料,硝基甲烷,分子动力学模拟,Car-Parrinello方法,热力学性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

对高压下液态硝基甲烷的性质进行经典和基于第一性原理计算的Car-Parrinello分子动力学(CPMD)模拟。利用经典势的分子动力学(MD)模拟研究了高压压缩状态下液态硝基甲烷的结构和热力学性质,得到了高达14.2GPa压力下的理论Hugoniot数据。对于一些热力学函数,如总能和粒子速度,经典势模拟给出了很好的总趋势,基本特征和实验观测一致。但是在给定的密度下,经典模拟预言的Hugoniot压力偏高。在几个选定的密度下,进行了CPMD模拟,得到了二体相关函数、速度自相关函数、振动光谱和其它的热力学性质,并与经典模拟结果进行了比较。对二体相关函数的分析表明经典势的短程部分的刚性可能太强,从而导致了比实验值高的理论压力值。对于某些二体相关函数,CPMD模拟和经典模拟结果差别很大,可以归结为量子效应。当压力增高时,量子模拟得到的振动光谱向高频部分移动的现象与实验观测相符合。

References

[1]  Ohno K, Esfarjani K, Kawazoe Y. Computational Materials Science [M]. Berlin: Springer, 1999.
[2]  Politzer P, Boyd S. Molecular Dynamics Simulations of Energetic Solids [J]. Struct Chem, 2002, 13: 105-162.
[3]  Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory [J]. Phys Rev Lett, 1985, 55: 2471-2474.
[4]  Pangilinan G I, Gupta Y M. Time-Resolved Raman Measurements in Nitromethane Shocked to 140 kbar [J]. J Phys Chem, 1994, 98: 4522-4529.
[5]  Constantinou C P, Windy J M, Gupta Y M. UV/Visible Absorption Spectra of Shocked Nitromethane and Nitromethane-Amine Mixtures up to a Pressure of 14 GPa [J]. J Phys Chem, 1994, 98: 7767-7776.
[6]  Winey J M, Gupta Y M. UV-Visible Absorption Spectroscopy to Examine Shock-Induced Decomposition in Neat Nitromethane [J]. J Phys Chem A, 1997, 101: 9333-9340.
[7]  Winey J M, Gupta Y M. Shocked-Induced Chemical in Neat Nitromethane: Use of Time-Resolved Raman Spectroscopy [J]. J Phys Chem B, 1997, 101: 10733-10743.
[8]  Gruzdkov Y A, Gupta Y M. Mechanism of Amine Sensitization in Shocked Nitromethane [J]. J Phys Chem A, 1998, 102: 2322-2331.
[9]  Gruzdkov Y A, Gupta Y M. Emission and Fluorescence Spectroscopy to Examine Shock-Induced Decomposition in Nitromethane [J]. J Phys Chem A, 1998, 102: 8325-8332.
[10]  Winey J M, Duvall G E, Knudson M D, et al. Equation of State and Temperature Measurements for Shocked Nitromethane [J]. J Chem Phys, 2000, 113: 7492-7501.
[11]  Alper H E, Abu-Awwad F, Politzer P. Molecular Dynamics Simulations of Liquid Nitromethane [J]. J Phys Chem B, 1999, 103: 9738-9742.
[12]  Sorescu D C, Rice B M, Thompson D L. Molecular Dynamics Simulations of Liquid Nitromethane [J]. J Phys Chem B, 2001, 105: 9336-9346.
[13]  Tuckerman M E, Klein M L. Ab Initio Molecular Dynamic Study of Solid Nitromethane [J]. Chem Phys Lett, 1998, 283: 147-149.
[14]  Reed E J, Joannopoulos J D, Fried L E. Electronic Excitations in Shocked Nitromethane [J]. Phys Rev B, 2000, 62: 16500-16509.
[15]  Elstner M, Porezag D, Jungnickel G, et al. Self-Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Complex Materials Properties [J]. Phys Rev B, 1998, 58: 7260-7268.
[16]  Margetis D, Kaxiras E, Elstner M, et al. Electronic Structure of Solid Nitromethane: Effects of High Pressure and Molecular Vacancies [J]. J Chem Phys, 2002, 117: 788-799.
[17]  Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. London: Oxford University Press, 1987.
[18]  Ponder J W. Dept of Biochemistry & Molecular Biophysics [M]. Washington: Washington Univ, School of Medicine, 1997.
[19]  Beeman D. Some Mutistep Method for Use in Molecular Dynamics Calculations [J]. J Comput Phys, 1976, 20: 130-138.
[20]  Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular Dynamics with Coupling to an External Bath [J]. J Chem Phys, 1984, 81: 3684-3690.
[21]  Toukmaji A Y, Board J A Jr. Ewald Summation Techniques in Perspective: A Survey [J]. Comp Phys Commun, 1996, 95: 73-95.
[22]  Parr R G, Yang W. Density Functional Theory of Atoms and Molecules [M]. London: Oxford University Press, 1989.
[23]  Becke A. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior [J]. Phys Rev A, 1988, 38: 3098-3100.
[24]  Perdew J P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas [J]. Phys Rev B, 1986, 33: 8822-8824.
[25]  Trouiller N, Martins J L. Efficient Pseudopotentials for Plane-Wave Calculations [J]. Phys Rev B, 1991, 43: 1993-2006.
[26]  Holian B L. Atomistic Computer Simulation of Shock Waves [J]. Shock Waves, 1995, 5: 149-159.
[27]  Maillet J B, Mareschal M, Soulard L, et al. Uniaxial Hugoniostat: A Method for Atomistic Simulations of Shocked Materials [J]. Phys Rev E, 2001, 63: 016121.
[28]  Nose S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods [J]. J Chem Phys, 1984, 81: 511-519.
[29]  Lenosky T J, Bickham S R, Kress J D, et al. Density-Functional Calculation of the Hugoniot of Shocked Liquid Deuterium [J]. Phys Rev B, 2000, 61: 1-4.
[30]  Zeldovich Y, Raizer Y. Physics of Shock Waves and High temperature Hydrodynamic Phenomena [M]. New York: Academic Press, 1966.
[31]  Lysne P C, Hardesty D R. Fundamental Equation of State of Liquid Nitromethane to 100 kbar [J]. J Chem Phys, 1973, 59: 6512-6523.
[32]  Hansen J P, McDonald I R. Theory of Simple Liquids [M]. New York: Academic Press, 1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133