全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压力下替位氢对金属锂能带结构的影响

DOI: 10.11858/gywlxb.2005.01.002, PP. 5-9

Keywords: 第一性原理,能带结构,压力效应,杂质,金属锂

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用第一原理的平面波-赝势密度泛函方法,研究了零温下体心立方(bcc)金属锂由于氢的替位掺杂和外界压力的改变所引起的电子结构变化。结果表明:掺杂体系仍然呈金属性,但是由于氢原子俘获了一个金属自由电子,具有了离子属性,使得费米面以下出现了孤立能带和带隙,最低金属价带偏离了自由电子带,形成鞍型带底,其它价带和导带均出现不同程度的简并解除和带型畸变。在压力的作用下,带隙加宽,费米面下的孤立带趋向于一条直线,成为一条能级。

References

[1]  Wigner E, Seitz F. On the Constitution of Metallic Sodium [J]. Phys Rev, 1933, 43: 804-810.
[2]  Seitz F. The Theoretical Constitution of Metallic Lithium [J]. Phys Rev, 1935, 47: 400-412.
[3]  Callaway J, Zou X, Bagayoko D. Total Energy of Metallic Lithium [J]. Phys Rev B, 1983, 27: 631-635.
[4]  Dacorogna M M, Cohen M L. First-Principles Study of the Structural Properties of Alkali Metals [J]. Phys Rev B, 1986, 34: 4996-5002.
[5]  Dugourd V B, Bordas C. Electronic Properties and Geometric Structures of Li4H and Li9H from Optical Absorption Spectra [J]. J Chem Phys, 1995, 102: 2727-2736.
[6]  Ray A K, Hira A S. Many-Body Perturbation Theory Applied to Hydrogen Interaction with Lithium Clusters [J]. Phys Rev B, 1988, 37: 9943-9950.
[7]  Li Y C, Guo Y, Tan F L, et al. Equation of State for Al-Li Alloy [J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 81-87. (in Chinese)
[8]  李永池, 郭扬, 谭福利, 等. 铝锂合金材料状态方程的研究 [J]. 高压物理学报, 2003, 17(2): 81-87.
[9]  Ma Y M, Cui T, He W J, et al. Pressure and Temperature Effects on the System of Lithium Doped in Solid D2 [J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 88-94. (in Chinese)
[10]  马琰铭, 崔田, 何文炯, 等. 压力和温度对固氘掺锂体系的影响 [J]. 高压物理学报, 2003, 17(2): 88-94.
[11]  Hamann D R, Schlüter M, Chiang C. Norm-Conserving Pseudopotentials [J]. Phys Rev Lett, 1979, 43: 1494-1497.
[12]  Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method [J]. Phys Rev Lett, 1980, 45: 566-569.
[13]  Perdew J P, Zunger A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems [J]. Phys Rev B, 1981, 23: 5048-5079.
[14]  Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations [J]. Phys Rev B, 1976, 13: 5188-5192.
[15]  Fischer T H, Almlf J. General Methods for Geometry and Wave Function Optimization [J]. J Phys Chem, 1992, 96: 9768-9774.
[16]  Segall A M D, Lindan P L D, Probert M J, et al. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code [J]. J Phys: Conden Matter, 2002, 14: 2717-2743.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133