全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种新的概念性层裂模型

DOI: 10.11858/gywlxb.2005.02.002, PP. 105-112

Keywords: 层裂模型,层裂强度,强度函数,临界损伤

Full-Text   Cite this paper   Add to My Lib

Abstract:

在重建Cochran-Banner模型的基础上提出了一种新的概念性层裂模型。这种新模型仅保留Cochran-Banner模型中的强度函数,重新定义损伤,并抛弃了基本假设:一旦微损伤形成,使微损伤演化远远易于使固体进一步体积应变,进而修正了差分微元中固体比容的计算。在新的模型中,一旦拉伸应力达到层裂强度,重新定义的损伤将由强度函数确定的应力松弛方程、计及损伤的能量守恒方程、状态方程以及本构方程等一系列封闭方程组确定。新模型中也仅包含两个参数:层裂强度及临界损伤度,它们的确定能使在一定初、边值条件下的层裂试验的数值计算结果与实验测得的靶自由面速度历史或靶-低阻抗界面应力历史以及回收观测的层裂面上的损伤一致。强调指出,选定强度函数或应力松弛方程提供了确定损伤的可能,同时排除了任何外加的损伤演化方程。

References

[1]  Curran D R, Seaman L, Shockey D A. Dynamic Failure of Solids [J]. Phys Rep Rev Sec Phys Lett, 1987, 147(5-6): 253.
[2]  Johnson J N, Addessio F L. Tensile Plasticity and Ductile Fracture [J]. J Appl Phys, 1988, 64(2): 6699-6712.
[3]  Rajendran A M, Dietenberger M A, Grove D J. A Void Growth-Based Failure Model to Describe Spallation [J]. J Appl Phys, 1989, 65: 1521.
[4]  Addessio F L, Johnson J N. A Constitutive Model for The Dynamic Response of Brittle Materials [J]. J Appl Phys, 1990, 67: 3275.
[5]  Nemes J A, Eftis J, Randles P W. Viscoplastic Constitute Modeling of High Strain Rate Deformation, Material Damage and Spall Fracture [J]. J Appl Mechan, 1990, 57(2): 282-291.
[6]  Eftis J, Nemes J A. Modeling of Impact-Induced Spall Fracture and Post Spall Behavior of a Circular Plate [J]. Int J Fract Mech, 1992, 53(4): 301-324.
[7]  Cortes R. Dynamic Growth of Microvoids under Combined Hydrostatic and Deviatoric Stresses [J]. Int J Solids Struct, 1992, 29(13): 1637-1645.
[8]  Addessio F L, Johnson J N. Rate-Dependent Ductile Failure Model [J]. J Appl Phys, 1993, 74(3): 1640-1648.
[9]  Nemes J A, Eftis J, Randles P W. Viscoplastic Constitutive Modeling of High Strain-Rate Deformation, Material Damage and Spall Fracture [J]. J Appl Mech, 1990, 57: 282.
[10]  Thomason P F. Ductile Spallation Fracture and the Mechanics of Void Growth and Coalescence under Shock-Loading Conditions [J]. Acta Mater, 1999, 47: 3633-3646.
[11]  Tonks D L, Zurek A K, Thissell W R. Void Coalescence Model for Ductile Damage [A]. Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001 [C]. New York: American Institute of Physics, 2002. 611-614.
[12]  Grady D E, Kipp M E. Dynamic Fracture and Fragmentation [A]. Asay J R, Shahinpoor M. High-Pressure Shock Compression of Solids [C]. New York: Springer-Verlag Inc, 1993. 267.
[13]  Cochran S, Banner D. Spall Studies in Uranium [J]. J Appl Phys, 1977, 48: 2729.
[14]  Wilkins M L. Calculation of Elastic-Plastic Flow [A]. Alder B. Methods in Computational Physics(3) [C]. New York: Academic Press, 1964. 211-263.
[15]  Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate [J]. J Appl Phys, 1980, 51: 1498-1504.
[16]  Rajendran A M. High Strain Rate Behavior of Metals [R]. AD-A252979, 1992.
[17]  Chen D N, Al-Hassani S T S, Sarumi M, et al. Crack Straining-Based Spall Model [J]. Int J Impact Eng, 1997, 19: 107-116.
[18]  Morris C E. Los Alamos Shock Wave Profile Data [C]. California: University of California Press, 1982. 70.
[19]  Chen D N, Yu Y Y, Yin Z H, et al. On the Validity of the Traditional Measurement of Spall Strength [J]. Int J Impact Eng, 2005, 31: 811-824.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133