全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压处理后水稻抗氧化酶活性及对逆境胁迫的响应

DOI: 10.11858/gywlxb.2005.03.008, PP. 235-240

Keywords: 水稻,高静水压,抗氧化,胁迫

Full-Text   Cite this paper   Add to My Lib

Abstract:

对经高静水压处理的水稻粤香占(OryzasativaL.cv.Yuexiangzhan)种子播种后的植株进行了抗氧化酶活性的测定和对逆境胁迫响应的研究。结果表明,高压处理抑制了水稻生长早期(12d)色素和蛋白质含量的增加,并使早期抗氧化酶活性表现较对照低。随着播种天数增加,经高压处理的材料中的色素、蛋白质含量不同程度地增加,抗氧化酶活性发生改变,至播种后32d时,高压处理的叶绿素含量和可溶性蛋白含量都高于对照粤香占。在自然低温条件下,经高压(干压、湿压)处理的植株其Rubisco大、小亚基含量和光合色素含量较高,抗光抑制能力增强,具一定的耐低温性。

References

[1]  Mozhaev V V, Heremans K, Frank J, et al. High Pressure Effects on Protein Structure and Function [J]. Proteins-Structure Function Genetics, 1996, 24: 81-91.
[2]  Asaka M, Hayashi R. Activation of Polyphenol Oxidase in Pear Fruits by High Pressure Treatment [J]. Agric Biol Chem, 1991, 55(9): 2439-2440.
[3]  Morishima I. Current Perspectives in High Pressure Biology [M]. London: Academic Press, 1987. 17-272.
[4]  Shantha D S, Doulas M C, Ana J, et al. High Resolution NMR Study of the Pressure-Induced Unfolding of Lysozyme [J]. Biochemistry, 1992, 3: 7773-7778.
[5]  Lellis F B, David L W. Strutural Change in Lipid Bilayers and Biological Membrane Caused by Hydrostatic Pressure [J]. Biochemistry, 1986, 25: 7484-7488.
[6]  Li G S, Bai C K, Duan J, et al. Effect of High Hydrostatic Pressure Treatment on Physiological Characteristics of Rice Plants (Oryza sativa L. ) [J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 122-128. (in Chinese)
[7]  李桂双, 白成科, 段俊, 等. 静水高压处理对水稻植株生理特性的影响 [J]. 高压物理学报, 2003, 17(2): 122-128.
[8]  Xu S P, Liao Y P, Weng K N, et al. Pressure Induced Rice Mutation and Effects of High Hydrostatic Pressure on the Growth and Development of Rice [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 241-248. (in Chinese)
[9]  徐世平, 廖耀平, 翁克难, 等. 水稻压致变异和高压对水稻生长发育的影响 [J]. 高压物理学报, 2001, 15(4): 241-248.
[10]  Bai C K, Li G S, Peng C L, et al. Preliminary Study of Rice Mutants Induced by High Hydrostatic Pressure [J]. Journal of Tropical and Subtropical Botany, 2003, 11(2): 132-136. (in Chinese)
[11]  白成科, 李桂双, 彭长连, 等. 高静水压诱导水稻变异的初步研究 [J]. 热带亚热带植物学报, 2003, 11(2): 132-136.
[12]  Lin Z F, Li S S, Lin G Z, et al. Superoxide Dismutase Activity and Lipid Peroxidation in Relation to Senescence of Rice Leaves [J]. Acta Botanica Sinica, 1984, 26: 605-615. (in Chinese)
[13]  林植芳, 李双顺, 林桂珠, 等. 超氧化物歧化酶和脂质过氧化与水稻叶片衰老的关系 [J]. 植物学报, 1984, 26: 605-615.
[14]  Bradford M M. A Rapid and Sentive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Protein-Dye Binding [J]. Anal Biochem, 1976, 72: 248-254.
[15]  Liu Y H, Peng X X, Li M Q. Degradation of Rubulose-1, 5-Bisphosphate Carboxylase/Oxygenase in Rice Leaves under Oxidative Stress Induced by Methyl Viologen [J]. Acta Phytophysiologica Sinica, 2000, 26(6): 481-486. (in Chinese)
[16]  刘拥海, 彭新湘, 李明启. 水稻叶片中过氧化氢与核酮糖-1, 5-二磷酸羧化酶/加氧酶降解的关系 [J]. 植物生理学报, 2000, 26(6): 481-486.
[17]  Giannopolities C N, Ries S K. Superoxide Dismutase Ⅱ. Purfication and Quantitative Relationship with Water-Soluble Protein in Seedings [J]. Plant Physiology, 1977, 59: 315-318.
[18]  Nakano Y, Asada K. Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxide in Spinach Chloroplasts [J]. Plant Cell Physiology, 1981, 22: 867-880.
[19]  Schreiber U, Schliwa U, Rilger W. Continues Recording of Photochemical and Nonphotochemical Chlorophyll Fluorescence Quenching with a New Type of Modulation Fluorometer [J]. Photosynth Res, 1986, 10: 51-62.
[20]  Foyes C H, Furbank R, Harbinson J. The Mechanisms Contributing to Photosynthetic Control of Electron Transport by Carbon Assimilation in Leaves [J]. Photosynth Res, 1990, 25: 83-100.
[21]  Wang B S. Free Radical and Harm of Plant's Membrane [J]. Plant Physiology Communications, 1988, (2): 12-16. (in Chinese)
[22]  王宝山. 植物自由基与植物膜伤害 [J]. 植物生理学通讯, 1988, (2): 12-16.
[23]  Yu S W, Tang Z C. Plant Physiology and Molecular Biology [M]. Beijing: Science Press, 1999. 224. (in Chinese)
[24]  余叔文, 汤章城. 植物生理与分子生物学 [M]. 北京: 科学出版社, 1999. 224.
[25]  Oquist G. Stress and Adaptation in Photosynthesis [A]. Doulas R H, Moan J, Dall Acqua. Light in Biology and Medicine [C]. New York; London: Planum Press, 1988. 433.
[26]  Amparo B, Georgia V, Maria C, et al. Variation in Resistance of Natural Isolates of Escherichia coli O157 to High Hydrostatic Pressure, Mild Heat, and Other Stresses [J]. Appl Environ Microb, 1999, 65(4): 1564-1569.
[27]  Chia L S, McRae D C, Thompson J E. Light-Dependence of Paraquat-Initiated Membrane Deterioration in Bean Plant. Evidence for the Involvement of Surperoxide [J]. Physiologia Plantarun, 1982, 56: 492-499.
[28]  Moran J F, Becana M, Iturbe-Ormaetxe I, et al. Drought Induces Oxidative Stress in Pea Plant [J]. Planta, 1994, 194: 346-352.
[29]  Alscher R G, Hess J L. Antioxidants in Higher Plant [M]. Boca Raton: CRC Press, 1993. 59-60.
[30]  Kayo C, Smorawinaka M, Li L, et al. Comparison of the Gene Expression of Aspartate Bate-D-Smialdehyde Dehydrogenase at Elevated Hydrostatic Pressure in Deep-Sea [J]. Bacteria J Biochem, 1997, 121(4): 717-723.
[31]  Gordon W N, Christopher A M, Bernard M M. The Effects of Hydrostatic Pressure on Ribosome Conformation in Escherichia coli: An in Vivo Study Using Differential Scanning Calorimetry [J]. Microbiology, 1999, 145: 419-425.
[32]  Fernandes P M B, Domitrovic T, Kao C M, et al. Genomic Expression Pattern in Saccharomyces Cerevisiae Cells in Response to High Hydrostatic Pressure [J]. FEBS Letters, 2004, 556: 153-160.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133