Millett J C F, Bourne N K, Rosenberg Z, et al. Shear Strength Measurements in a Tungsten Alloy during Shock Loading [J]. J Appl Phys, 1999, 86: 6707-6709.
[2]
Millett J C F, Bourne N K, Graylll G T, et al. The Response of TiAl Based Alloys to One Dimensional Shock Loading [J]. Acta Materiala, 2002, 50: 4801-4811.
[3]
Graylll G T, Bourne N K, Millett J C F. Shock Response of Tantalum: Lateral Stress and Shear Strength througth the Front [J]. J Appl Phys, 2003, 94: 6430-6436.
[4]
Zhou M, Clifton R J. Dynamic Constitutive and Failure Behavior of a Two-Phase Tungsten Composite [J]. J Appl Mech, 1997, 64: 487.
[5]
Clifton R J. Response of Materials under Dynamic Loading [J]. Int J Solids Struct, 2000, 37: 105-113.
[6]
Fruschy K J, Clifton R J. High-Temperature Pressure-Shear Plate Impact Experiments on OFHC Copper [J]. J Mech Phys Solids, 1998, 46: 1723-1743.
[7]
Kanel G I, Ragorenov S V, Bogatch A A, et al. Spall Fracture Properties of Aluminum and Magnesium at High Temperature [J]. J Appl Phys, 1996, 79: 8310-8317.
[8]
Frutschy K J, Clifton R J. High Temperature Pressure Shear Plate Impact Experiments and Results for Pure Tungsten Carbide [J]. Exp Mech, 1998, 38: 116-125.
[9]
Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain-Rates and High Temperatures [A]. Porc 7th Int Nat Symposium on Ballistcs [C]. The Hague, The Netherlands, 1983.
[10]
Zerilli F J, Armstrong R W. Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations [J]. J Appl Phys, 1987, 61: 1816.
[11]
Bodner S R, Partom Y. Consitutive Equation for Elastic-Viscoplastic Srain-Hardening Materials [J]. J Appl Mech, 1975, 42: 385-389.
[12]
Asay J R. Shock Wave Paradigms and New Challenges [A]. Furnish M D, Thadhani N N, Norie Y. Shock Compression of Condensed Mater-2001 [C]. New York: Melville, 2002. 26-35.
[13]
Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate [J]. J Appl Phys, 1980, 53: 1498-1504.
[14]
Steinberg D J, Lund C M. A Constitutive Model for Strain Rates from 10-4 to 106 s-1 [J]. J Appl Phys, 1989, 65: 1526-1533.
[15]
Hua J S. Constitutive Equations for 93W at High Temperature and High Pressure [D]. Mianyang: China Academy of Engineering Physics, 1999. (in Chinese)
[16]
华劲松. 高温高压下钨合金的本构方程研究 [D]. 绵阳: 中国工程物理研究院, 1999.
[17]
Zhang J Y , Tan H, Yu J L. Determination of the Yield Strength of 93W Alloys by Using AC Techniques [J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 254-259. (in Chinese)
Xu B Y, Liu X S. Applied Elastic and Plastic Mechanics [M]. Beijing: Tsinghua University Press, 1995. 112. (in Chinese)
[20]
徐秉业, 刘信声. 应用弹塑性力学 [M]. 北京: 清华大学出版社, 1995. 112.
[21]
Meyers M A. Dynamic Behavior of Materials [M]. New York, Chichester, Brisbane, Toronto, Singapore: A Wiley-Interscience Publication John Wiley & Sons Inc, 1994. 386-387.
[22]
Millett J C F, Bourne N K, Rosenberg Z. On the Analysis of Transverse Stress Gauge Data from Shock Loading Experiments [J]. J Phys D: Appl Phys, 1996, 29: 2466-2472.
[23]
Greenwood D, Forbes J, Garcia F, et al. Improvements in the Signal Fidelity of the Manganin Stress Gauge [A]. Furnish M D, Thadhani N N, Norie Y. Shock Compression of Condensed Matter-2001 [C]. New York: Melville, 2002. 1157-1159.