全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压力对六角密堆结构金属锂弹性的影响

DOI: 10.11858/gywlxb.2005.04.008, PP. 331-336

Keywords: 第一性原理,弹性常数,压力效应,金属锂,弹性各向异性

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用密度泛涵理论第一原理赝势方法,利用应力和应变的关系计算了压力下六角密堆结构金属锂的弹性常数。计算结果显示,C12、C13随着压力的增加而线性增加,而压力对C44和C66的影响并不大。在各个压力点C33值都要比C11的值大,表明金属锂在z方向的硬度要比x、y方向的硬度大。还发现在理论预测的结构相变区域,C11和C33有一个跳跃。通过对压缩波各向异性参数Δp和剪切波各向异性参数Δs1、Δs2的计算发现,零压下Δp=1,并且高压下Δp值也接近1,表明压缩时金属锂表现出各向同性。Δs1、Δs2值远离1,并且随着压力的增加这种远离趋势不断增强,表现很强的剪切弹性各向异性。还讨论了压力对Cauchy关系和相对弹性常数的影响。

References

[1]  Paulus B, Rosciszewski K, Fulde P. Metal-Insulator Transition in Lithium Rings [J]. Phys Rev B, 2003, 68: 235115-235122.
[2]  Hanfland M, Syassen K, Christensen N E, et al. New High-Pressure Phases of Lithium [J]. Nature, 2000, 408: 174-178.
[3]  Berliner R, Fajen O, Smith H G, et al. Neutron Powder-Diffraction Studies of Lithium, Sodium, and Potassium Metal [J]. Phys Rev B, 1989, 40: 12086-12097.
[4]  Schwarz W, Blaschko O. Polytype Structures of Lithium at Low Temperatures [J]. Phys Rev Lett, 1990, 65: 3144-3147.
[5]  Dacorogna M M, Cohen M L. First-Principle Study of the Structural Properties of Alkali Metals [J]. Phys Rev B, 1986, 34: 4996-5002.
[6]  Nobel J A, Trickey S B. Low-Pressure Crystalline Phases of Lithium [J]. Phys Rev B, 1992, 45: 5012-5014.
[7]  Pronk S, Frenkel D. Large Difference in the Elastic Properties of fcc and hcp Hard-Sphere Crystals [J]. Phys Rev Lett, 2003, 90: 255501-255504.
[8]  Vanderbilt D. Soft Self Consistent Pseudopotentials in a Generalized Eigenvalue Formalism [J]. Phys Rev B, 1990, 41: 7892-7895.
[9]  Lin J S, Qteish A, Payne M C, et al. Optimized and Transferable Nonlocal Separable ab initio Pseudopotentials [J]. Phys Rev B, 1993, 47: 4174-4180.
[10]  Perdew J P, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy [J]. Phys Rev B, 1992, 45: 13244-13249.
[11]  Perdew J P, Chevary J A, Vosko S H, et al. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation [J]. Phys Rev B, 1992, 46: 6671-6687.
[12]  Karki B B, Stixrude L, Clark S J, et al. Elastic Properties of Orthorhombic MgSiO3 Perovskite at Lower Mantle Pressures [J]. Am Mineral, 1997, 82: 635-638.
[13]  Karki B B, Stixrude L, Clark S J, et al. Structure and Elasticity of MgO at High Pressure [J]. Am Mineral, 1997, 82: 51-60.
[14]  Segall M D, Lindan P L D, Probert M J, et al. First-Principles Simulation: Ideas, Illustrations and the Castep Code [J]. J Phys Cond Matt, 2002, 14(11): 2717-2743.
[15]  Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations-A Reply [J]. Phys Rev B, 1977, 16: 1748-1749.
[16]  Felice R A, Trivisonno J. Temperature and Pressure Dependence of the Single-Crystal Elastic Constants of 6Li and Natural Lithium [J]. Phys Rev B, 1977, 16: 5173-5184.
[17]  Mehl M J. First-Principles Study of the Structural Properties of Alkali Metals [J]. Phys Rev B, 1993, 47: 2493-2500.
[18]  Leigh R S. A Theory of the α, α′ Phases in the Alumimum-Zinc System [J]. Philos Mag, 1951, 42: 139.
[19]  Steinle-Neumann G, Stixrude L. First-Principles Elastic Constants for the hcp Transition Metals Fe, Co, and Re at High Pressure [J]. Phys Rev B, 1999, 60: 791-799.
[20]  Fast L, Wills J M, Johansson B, et al. Elastic Constants of Hexagonal Transition Metals: Theory [J]. Phys Rev B, 1995, 51: 17431-17438.
[21]  Zha C-S, Mao H-K, Hemley R J. Elasticity of Dense Helium [J]. Phys Rev B, 2004, 70: 174107-174114.
[22]  Christensen N E. Predicted Superconductive Properties of Lithium under Pressure [J]. Phys Rev Lett, 2001, 86: 1861-1864.
[23]  Lin T H, Dunn K J. High-Pressure and Low-Temperature Study of Electrical Resistance of Lithium [J]. Phys Rev B, 1986, 33: 807-811.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133