Coes L Jr. A New Dense Crystalline Silica [J]. Science, 1953, 118: 131-132.
[2]
Hsu K J. Exhumation of High-Pressure Metamorphic Rocks [J]. Geology, 1991, 19: 107-110.
[3]
Okay A I, Sengor A M C. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China [J]. Geology, 1992, 20: 411-414.
[4]
Liou J G R. High-Pressure Minerals from Deeply Subducted Metamorphic Rocks [A]. //Hemley R J. Reviews in Mineralogy (Vol 37). Ultrahigh-Pressure Mineralogy: Physics & Chemistry of the Earth's Deep Interior [C]. Washington D C, 1998: 33-85.
[5]
Coleman R G, Wang X. Ultrahigh Pressure Metamorphism [M]. Cambridge: Cambridge Univ Press, 1995.
[6]
Chopin C. Coesite and Pure Pyrope in High-Grad Blueschists of the Western Alps-A First Record and Some Consequences [J]. Contrib Mineral Petrol, 1984, 86: 107-118.
[7]
Smith D C. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics [J]. Nature, 1984, 310: 641-644.
[8]
Caby R. Precambrian Coesite from North Mali-First Record and Implications for Plate-Tectonics in the Trans-Saxaran Segment of the Pan-African Belt [J]. Eur J Mineral, 1994, 6: 235-244.
[9]
Wang X, Lion J G, Mao H K. Coesite-Bearing Eclogite from the Dabie Mountains in Central China [J]. Geology, 1989, 17: 1085-1088.
[10]
Liou J G, Zhang R Y. Occurrences of Intergranular Coesite in Ultra-High-Pressure Rocks from the Sulu Region, Eastern China: Implications for Lack of Fluid During Exhumation [J]. Amer Mineral, 1996, 81: 1217-1221.
[11]
O'Brien P J, Law R, Trelar P J. The Subduction and Exhumation History of the Indian Plate During Himalayan Collision: Evidence from Rare Eclogites [R]. Bayerisches Forschungsinstitut für Experimentlle Geochemie und Geophysik Universitat Bayeuth Annual Report, 1998: 75-76.
[12]
Mirwald P W, Massonne H J. The Low-High Quartz and Quartz-Coesite Transition to 40 kbar between 600 ℃ and 1600 ℃ and Some Reconnaissance Data on the Effect of NaAlO2 Component on the Low Quartz-Coesite Transition [J]. J Geophys Res, 1980, 85: 6983-6990.
[13]
Bohlen S R, Boettcher A L. The Quartz Coesite Transformation: A Precise Determination and the Effects of Other Components [J]. J Geophys Res, 1982, 87(B8): 7073-7078.
[14]
Bose K, Ganguly J. Quartz-Coesite Transition Revisited: Reversed Experimental Determination at 500~1000 ℃ and Retrieved Thermochemical Properties [J]. Am Mineral, 1995, 80: 231-238.
[15]
Renner J, Zerbian A, Stockhert B. Microstructures of Synthetic Polycrystalline Coesite Aggregates. The Effect of Pressure, Temperature, and Time [J]. Lithos, 1997, 41: 169-184.
[16]
Kato M. Synthesis of Coesite from Ultra Fine Particles [J]. Japn J Appl Phys, 1975, 14(2): 181-183.
[17]
Liu X Y, Su W H, Wang Y F. Transformation of ZSM-5 to ZSM-11 Zeolite under High Pressure [J]. J Chem Soc, Chem Commun, 1992, 12: 902-903.
[18]
Liu X Y, Su W H, Wang Y F. Transformation of MFI to β-Quartz and Coesite under High Pressure and High Temperature [J]. J Chem Soc, Chem Commun, 1993, 11: 891-892.
[19]
Liu X Y. Transformation of ZSM-5 Zeolite under High Pressure and High Temperature [J]. Science in China(B), 1994, 37(9): 1054-1062.
[20]
Yao B. Mechanism of Mechanical Crystallization of Amorphous Fe-Mo-Si-B Alloy [J]. J Appl Phys, 2001, 90(3): 1650-1654.
[21]
Liu L. Thermodynamic Mechanisms of Mechanical Crystallization of Amorphous Fe-N Alloy [J]. J Alloy Comp, 2002, 333: 202-206.
[22]
Yao B. Effect of Local Pressure on the Crystallization Product of Amorphous Alloys Induced by Mechanical Milling [J]. J Non-Cryst Sol, 2000, 277: 91-97.
[23]
Yao B, Liu L, Su W H. Formation of Cubic C-B-N by Crystallization of Nano-Amorphous Solid at Atmosphere [J]. J Mater Res, 1998, 13(7): 1753-1756.
[24]
Su W H. Mossbauer Effect Used to Study Rare-Earth Oxides Synthesized by a High-Pressure Method [J]. Phys Rev B, L988, 37(1): 35-37.
[25]
Li L P. Valence Characteristics and Structural Stabilities of the Electrolyte Solid Solutions Ce1-xRExO2-δ(RE=Eu, Tb) by High Temperature and High Pressure [J]. Chem Mater, 2000, 12: 2567-2574.
[26]
Su W H. An Investigation of the Effect of High Pressure on the Synthesis of LaLnO3 Compounds [J]. Physica, 1986, 139/140B: 661-663.
[27]
Richet P. Superheating, Melting and Vitrification Through Decompression of High-Pressure Minerals [J]. Nature, 1988, 331: 56-58.
[28]
Boyer H. Raman Microprobe (RMP) Determinations of Natural and Synthetic Coesite [J]. Phys and Chem Minerals, 1985, 12: 45-48.
[29]
Xu P C. Raman Study of High-Pressure Metamorphic Coesite in the Central China [J]. Geology Science of the North-Western China, 1992, 13(2): 111-119.
[30]
Sharma S K, Mammone J F, Nicol M F. Raman Investigation of Ring Configurations in Vitrous Silica [J]. Nature, 1981, 292: 140-141.
[31]
Williams Q. High Pressure Infrared Spectra of α-Quartz, Coesite, Stishovite, and Silica Glass [J]. J Geophys Res, 1993, 98(12): 22157-22170.
[32]
Jerry W. Shock-Wave Compression of Quartz [J]. J Appl Phys, 1962, 33(3): 922-937.
[33]
de Resse'guier T, Berterretche P, Hallouin M, et al. Structural Transformations in Laser Shock-Loaded Quartz [J]. J Appl Phys, 2003, 94(3): 2123-2129.
[34]
Swift Damian C, Tierney IV Thomas E, Kopp Roger A, et al. Shock Pressures Induced in Condensed Matter by Laser Ablation [J]. Phys Rev E, 2004, 69: 036406-9.
[35]
Su W H, Liu S E, Xu D P, et al. A New Way of Transformation from α-Quartz to Coesite [J]. Progress in Natural Science, 2005, 15(10): 1217-1222. (in Chinese)