全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fe/FeO/FeS混合物的Hugoniot线研究

DOI: 10.11858/gywlxb.2006.02.005, PP. 139-144

Keywords: Hugoniot,体积可加性原理,Fe/FeO/FeS

Full-Text   Cite this paper   Add to My Lib

Abstract:

在50~210GPa的压力范围内,用二级轻气炮和电探针技术对平均密度ρ0=(6.69±0.06)g/cm3的三组元Fe/FeO/FeS(质量分数分别为58.96%、35.83%、5.21%)混合物的Hugoniot线进行了实验测量,所得的Hugoniot参数为:C0=(3.97±0.07)km/s,λ=1.58±0.03。该混合物Hugoniot线的实测结果与用体积可加性原理计算得到的相同组分混合物的Hugoniot线的符合性很好;根据实验数据还计算了混合物的0K等温压缩线,发现它与体积可加性原理对单质Fe、FeO和FeS的0K等温压缩线的计算结果相一致,证明了实验结果的合理性与体积可加性原理的适用性,也表明了此混合物在冲击压缩过程中没有发生过可察觉的化学反应。研究结果亦为今后对外地核各种浓度比Fe-O-S体系候选组分高温高压物态方程及物性的进一步研究奠定了基础。

References

[1]  Dziewonski A M, Anderson D L. Preliminary Reference Earth Model [J]. Phys Earth Planet Interiors, 1981, 25: 297-356.
[2]  Birch F. Elasticity and Constitution of the Earth's Interior [J]. J Geophys Res, 1952, 20: 227-286.
[3]  Poirier J P. Light Elements in the Earth's Outer Core: A Critical Review [J]. Phys Earth Planet Inter, 1994, 85: 319-337.
[4]  Stevenson D J. Models of the Earth's Core [J] Science, 1981, 241: 611-619.
[5]  Knittle E, Jeanloz R, Michell A C, et al. Metallization of Fe0. 94O at Elevated Pressures and Temperatures Observed by Shock-Wave Electrical Resistivity Measurements [J] Solid State Commun, 1986, 59: 513-515.
[6]  Knittle E, Jeanloz R. Simulating the Core-Mantle Boundary: An Experimental Study of High-Pressure Reactions between Silicates and Liquid Iron [J]. Geophys Res Lett, 1989, 16: 609-612.
[7]  Williams Q, Jeanloz R, Bass J, et al. The Melting Curve of Iron up to 250 Gigapascals: A Constraint on the Temperature at the Earth's Center [J]. Science, 1987, 236: 181-183.
[8]  Jeanloz R, Ahrens T J. Equation of State of FeO and CaO [J]. Geophys J R Astr Soc, 1980, 62: 505-528.
[9]  Knittle E, Jeanloz R. Earth's Core-Mantle Boundary: Results of Experiments at High Pressures and Temperatures [J]. Science, 1991, 251: 1438-1443.
[10]  Boehler R. Melting of the Fe-FeO and Fe-FeS Systems at High Pressures: Constraints on Core Temperatures [J]. Earth Planet Sci Lett, 1992, 111: 217-227.
[11]  Boehler R. Temperatures in the Earth's Core from Melting-Point Measurements of Iron at High Static Pressure [J]. Nature, 1993, 363: 534-536.
[12]  Williams Q, Jeanloz R. Melting Relations in the Iron-Sulfur System at Ultra-High Pressure: Implications for the Thermal State of the Earth [J]. J Geophys Res, 1990, 95: 19299-19310.
[13]  Ahrens T J. Equations of State of Iron Sulfide and Constraints on the Sulfur Content of the Earth [J]. J Geophys Res, 1979, 84: 985-998.
[14]  Brown J M, Ahrens T J, Shampine D L. Hugoniot Data for Pyrrhotite and the Earth's Core [J]. J Geophys Res, 1984, 89: 6041-6048.
[15]  Ahrens T J, Jeanloz R. Pyrite: Shock Compression, Isentropic Release, and Composition of the Earth's Core [J]. J Geophys Res, 1987, 92: 10363-10375.
[16]  Ringwood A E. On the Composition of the Core and Implications for the Origin of the Earth Geochim [J]. Cosmochim Acta, 1977, 11: 111-135.
[17]  Urakawa S, Kato M, Kumazawa M. Experimental Study on the Phase Relation in the System Fe-Ni-O-S up to 15 GPa [A]. //Manghnani M H, Syono Y. High Pressure Research in Mineral Physics [C]. Terrapub, Tokyo, 1987: 95-111.
[18]  Brown J M, Fritz J N, Hixson R S. Hugoniot Data for Iron [J]. J Apply Phys, 2000, 88: 5496-5498.
[19]  Yagi T, Fukuoka K, Takei H, et al. Shock Compression of Wustite [J]. Geophys Res Lett, 1988, 15: 816-819.
[20]  Michell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1981, 52: 3363-3374.
[21]  Jing F Q. Introduction to Experimental Equation of State [M]. Beijing: Scientific Press, 1986: 371. (in Chinese)
[22]  经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1986: 371.
[23]  Lin H L, Yu W R. A theoretical Study on Heat Conduction Following Shock Compression [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 49-56. (in Chinese)
[24]  林华令, 于万瑞. 冲击压缩后热传导的理论研究 [J]. 高压物理学报, 1994, 8(1): 49-56.
[25]  Lin H L, Yu W R. Simulation of Shock Compression Behavior of Mixture by Using the Finite Element Method [J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 40-46. (in Chinese)
[26]  林华令, 于万瑞. 有限元模拟混合物的冲击压缩特性 [J]. 高压物理学报, 1998, 12(1): 40-46.
[27]  Lin H L, Huang F L, Yu W R. Numerical Simulation of Shock Temperature of Mixture Studing Shock Loading [J]. Chinese Journal of High Pressure Physics, 2002, 16(1): 46-56. (in Chinese)
[28]  林华令, 黄风雷, 于万瑞. 混合物冲击温度的数值模拟 [J]. 高压物理学报, 2002, 16(1): 46-56.
[29]  Anderson O L, Dubrovinsky L, Saxena S K, et al. Experimental Vibrational Grüneisen Ratio Values for Epsilon-Iron up to 330 GPa at 300 K [J]. Geophys Res Lett, 2001, 28: 399-402.
[30]  Jackson I, Khanna S K, Revcolevschi A, Berthon J. Elasticity, Shear-Mode Softening and High-Pressure Polymorphism of Wüstite (Fe1-xO) [J]. J Geophys Res, 1990, 95: 21671-21685.
[31]  Fei Y W, Mao H K. In Situ Determination of the NiAs Phase of FeO at High Pressure and Temperature [J]. Science, 1994, 266: 1678-1680.
[32]  Wu Q, Jing F Q, Li X Z. Behavior of Grüneisen Parameter at High Pressure and Temperature Inferred from Shock Compression Data [J]. Chin Phys Lett, 2002, 19: 528-530.
[33]  Mao H K, Zou G, Mell P M, Experiments Bearing on the Earth's Lower Mantle and Core [R]. Washington: Year Book Carnegie Inst, 1981, 80: 267-272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133