全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金属冲击温度的辐射法测量问题

DOI: 10.11858/gywlxb.2006.02.001, PP. 113-121

Keywords: 金属,冲击温度,熔化温度,界面,热传导

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属的冲击温度及熔化温度测量对构建其完全状态方程具有重要意义。简要综述了用于金属冲击温度及熔化温度辐射法测量的一维热传导理想界面模型和非理想界面模型,并着重对模型中明示或隐含的关键假定的合理性、影响金属冲击温度与熔化温度结果的主要因素进行了分析、讨论,以期对实验数据有一个合理的评估。还讨论了求解理想和非理想界面模型一维热传导方程界面温度时所隐含的冲击压缩下热导率不随温度而变、冲击压缩下金属样品/窗口界面辐射的灰体假定,以及窗口材料的透明性、非理想界面模型中表观界面温度的修正、动载条件下金属高压熔化温度的测量、界面的非Flourier热传导等问题。分析结果表明,目前采用辐射法测量大致可以得到冲击温度,在发生熔化的情况下可获得熔化温度,但离精密测量的要求还有较大差距。

References

[1]  Boslough M B, Ahrens T J. A Sensitive Time-resolved Radiation Pyrometer for Shock Temperature Measurements above 1500 K [J]. Rev Sci Instrum, 1989, 60: 3711-3716.
[2]  Kubayashi T, Sekine T, Fat'yanov O V, et al. Radiation Temperatures of Soda-Lime Glass in Its Shock-Compressed Liquid State [J]. J Appl Phys, 1998, 83: 1711-1716.
[3]  Yoo C S, Holmes N C, Ross M, et al. Shock Temperatures and Melting of Iron at Earth Core Conditions [J]. Phys Rev Lett, 1993, 70: 3931-3934.
[4]  Nellis W J, Yoo C S. Issues Concerning Shock Temperature Measurements of Iron and Other Metals [J]. J Geophys Res, 1990, 95(B13): 21749-21752.
[5]  Grover R, Urtiew P A. Thermal Relaxation in Interfaces Following Shock Compression [J]. J Appl Phys, 1974, 45: 146-152.
[6]  McQueen R G, Issak D G. Characterizing Windows for Shock Wave Radiation Studies [J]. J Geophys Res, 1990, 95 (B13): 21753-21765.
[7]  Tan H, Dai C D. Problems of Shock Temperature Measurements for Metals by Using Optical Radiometry Method [J]. High Pressure Research, 2001, 21: 183-214.
[8]  Zhou X M, Jing F Q, Huang J B. Thermal Relaxation at Thin-Layer Interface: Its Significance to Shock Temperature Study [J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 8-11. (in Chinese)
[9]  周显明, 经福谦, 黄建彬. 薄夹层界面热驰豫解及其在冲击温度研究中的意义 [J]. 高压物理学报, 1997, 11(1): 8-11.
[10]  Blanco E, Mexmain J M, Chapron P. Temperature Measurements of Shock Heated Materials Using Multispectral Pyrometry: Application to Bismuth [J]. Shock Wave, 1999, 9: 209-214.
[11]  Urtiew P A, Grover R. Temperature Deposition Caused by Shock Interaction with Material Interface [J]. J Appl Phys, 1974, 45: 140-145.
[12]  Kittle C. Introduction to Solid State Physics [M]. New York: John Wiley & Sons, Inc, 1966.
[13]  Mott N F, Jones H. The Theory of the Properties of Metals and Alloys [M]. New York: Dover Publications Inc, 1958: 305-314.
[14]  Anderson W W, Ahrens T J. Shock Temperature and Melting in Iron Sulfides at Core Pressures [J]. J Geophys Res, 1996, 101(B3): 5627-5642.
[15]  Tang W H, Jing F Q, Zhang R Q, et al. Thermal Relaxation Phenomena across Metal/Window Interface and Its Significance to Shock Temperature Measurements of Metals [J]. J Appl Phys, 1996, 80: 3248-3253.
[16]  Xu C H. The Influence of the Sample/Window Gap on Hugoniot Temperature Measurements for Metals [D]. Mianyang: CAEP, 2004. (in Chinese)
[17]  许灿华. 样品/窗口间隙对金属冲击波温度测量的影响 [D]. 绵阳: 中国工程物理研究院, 2004.
[18]  Obst A W, Alrick K R, Anderson W W, et al. Ellipsometry in the Study of Dynamic Material Properties [A]. //Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001 [C]. New York: AIP, 2002: 1247-1250.
[19]  Hare D E, Holmes N C, Webb D J. Shock-Wave Induced Optical Emission from Sapphire in the Stress Range 12 to 45 GPa: Images and Spectra [J]. Phy Rev B, 2002, 66: 014108-1/11.
[20]  Yoo C S, Holmes N C, See E. Shock-Induced Optical Changes in Al2O3 at 200 GPa: Implications for Shock Temperature Measurements in Metals [A]. //Schmidt S C, Dick R D, Forbes J W, et al. Shock Compression of Condensed Matter-1991 [C]. New York: Elsevier Science, 1992: 733-736.
[21]  Willliam Q, Jeanloz R, Bass J D, et al. The Melting Curve of Iron to 250 Gigapascals: A Constraint on the Temperature at Earth's Center [J]. Science, 1987, 236: 181-182.
[22]  Tan H, Ahrens T J. Shock Temperature Measurements for Metals [J]. High Pressure Research, 1990, 2: 159-182.
[23]  Zhang L Y. Experimental Research on Melting Properties of Oxygen-Free Copper at Shock Compression [D]. Mianyang: CAEP, 2004. (in Chinese)
[24]  张凌云. 无氧铜冲击熔化特性的实验研究 [D]. 绵阳: 中国工程物理研究院, 2004.
[25]  Dai C D. Shock Melting Behaviors of Iron Meteorite and Implications for the Thermal Structure of the Earth's Core [D]. Mianyang: CAEP, 1999. (in Chinese)
[26]  戴诚达. 铁陨石的冲击熔化特性与地核的热结构 [D]. 绵阳: 中国工程物理研究院, 1999.
[27]  Dai C D, Tan H, Geng H Y. Model for Assessing the Melting on Hugoniots of Metals: Al, Pb, Cu, Mo, Fe and U [J]. J Appl Phys, 2002, 92(9): 5019-5016.
[28]  Zhang G R. Theoretical Problems of Temperature Measurement in Sample under Shock Wave [J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 241-246. (in Chinese)
[29]  章冠人. 冲击波后温度测量的理论问题 [J]. 高压物理学报, 1992, 6(4): 241-246.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133