Tsai D H, Beckett C W. Shock Wave Propogration in Cubic Lattices [J]. J Geophys Res, 1966, 71: 2601-2608.
[2]
Zhakhovskii V V, Zybin S V, Nishihara K, et al. Shock Wave Structure in Lennard-Jones Crystal via Molecular Dynamics [J]. Phys Rev Lett, 1999, 83: 1175-1178.
[3]
Tsai D H, MacDonald R A. Second Sound in a Solid under Shock Compression [J]. J Phys C: Solid St Phys, 1973, 6: L171-175.
[4]
Tsai D H, MacDonald R A. Molecular-Dynamical Study of Second Sound in a Solid Excited by a Strong Heat Pulse [J]. Phys Rev B, 1976, 14: 4716-4723.
[5]
Paskin, Gohar A, Dienes G J. Simulations of Shock Waves in Solids [J]. J Phys, 1977, 10: L563-L566.
[6]
Manvi R, Duvall G E, Lowell S C. Finite Amplitude Longitudinal Waves in Lattices [J]. Int J Mech, 1969, 11: 1-8.
[7]
Straub G K, Holian B L, Petschek R G. Molecular Dynamics of Shock Wave in One-Dimensional Chains(Ⅱ): Thermalication [J]. Phys Rev B, 1978, 19: 4049-4055.
[8]
Timothy C, Germann, Holian B L. Plastic Deformation in Shock Waves via Molecular-Dynamics Simulations [A]. //Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: American Institute of Physics, 2000: 297-300.
[9]
Holian B L, Straub G K. Molecular Dynamics of Shock Wave in Three-Dimensional Solids: Transition from Nonsteady to Steady Waves in Perfect Crystals and Implications for the Rankine-Hugoniot Conditions [J]. Phys Rev Lett, 1979, 43: 1598-1600.
[10]
Holian B L, Hoover W G, Moran B, et al. Shock-Wave Structure via Nonequilibrium Molecular Dynamics and Navier-Stokes Continum Mechanics [J]. Phys Rev A, 1980, 22: 2798-2808.
[11]
Holian B L. Modeling Shock-Wave Deformation via Molecular Dynamics [J]. Phys Rev A, 1987, 37: 2562-2568.
[12]
Norman J, Wagner, Holian B L. Molecular-Dynamics Simulation of Two-Dimensional Materials at High Strain Rates [J]. Phys Rev A, 1992, 45: 8457-8469.
[13]
Pan Y S. Molecular Dynamics Study of High Pressure Shock Compression of Solids [D]. Mianyang: China Academy of Engineering Physics, 1997: 1-37. (in Chinese)
Mishin Y, Mehl M J, Papaconstantopoulos D A. Structural Stability and Lattice Defects in Copper: Ab initial, Tight-Binding, and Embedded-Atom Caculations [J]. Phys Rev B, 2001, 63: 224106-1-15.
[16]
Luo J, Zhu W J, Lin L B, et al. Molecular Dynamics Simulation of Void Growth in Single Crystal Copper under Uniaxial Impacting [J]. Acta Physica Sinica, 2005, 54(6): 2791-2798. (in Chinese)
Cormier J, Rickman J M, Delph D J. Stress Calculation in Atomistic Simulations of Perfect and Imperfect Solids [J]. J Appl Phys, 2001, 89: 99-104.
[19]
Seppala E T, Beleak J, Rudd R E. Effect of Stress Triaxiality on Void Growth in Dynamic Fracture of Metals: A Molecular Dynamics Study [J]. Phys Rev B, 2004, 69: 134101-1-19.
[20]
Zybin S V, Elert M L, White C T. Molecular Dynamics Study of Non-Reacting Shock Waves in Anthracene [A]. //Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: American Institute of Physics, 2004: 306-309.
[21]
Hayes D, Hixson R S, McQueen R G. High Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper [A]. //Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: American Institute of Physics, 2000: 483-488.
[22]
Bringa E M, Cazamias J U, Erhart P, et al. Atomistic Shock Hugoniot Simulation of Single-Crystal Copper [J]. J Appl Phys, 2004, 96: 3793-3799.