全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

33GPa压力以下液氩冲击温度的实验测量

DOI: 10.11858/gywlxb.2006.03.013, PP. 296-300

Keywords: 液氩,冲击温度,光纤高温计

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用液氮冷靶系统制取液氩样品,以二级氢气炮作为加载工具,驱动飞片对液氩样品进行平面冲击压缩,实验测量了33GPa冲击压力以下液氩的冲击温度。飞片速度由磁测速系统测量,冲击波速度和冲击温度用光纤耦合高温计系统测量,粒子速度采用阻抗匹配法计算得到。实验测得当冲击压力为33GPa时,液氩的冲击温度超过10000K;而当冲击压力超过30GPa时,冲击温度的上升趋势与理论计算相比明显变缓,该压力点正好与以前测得的冲击波速度-粒子速度曲线的拐点一致。

References

[1]  Grigoriev F V, Kormer S B, Mikhailova O L, et al. Shock Compression and Brightness Temperature of a Shock Wave Front in Argon. Electron Screening of Radiation [J]. Sov Phys JETP, 1985, 61(4): 751-757.
[2]  Zha C S, Boehler R, Young D A, et al. The Argon Melting Curve to Very High Pressures [J]. J Chem Phys, 1986, 85(2): 1034-1036.
[3]  Ross M, Mao H K, Bell P M, et al. The Equation of State of Dense Argon: A Comparison of Shock and Static Studies [J]. J Chem Phys, 1986, 85(2): 1028-1033.
[4]  Wang F H, Yang Ch L, Li X J, et al. Study on Many-Body Interaction and Molecular Dynamics Simulation for the Hugoniot Curve of Liquid Argon [J]. Acta Phys Sinica, 2000, 49(1): 114-118. (in Chinese)
[5]  王番侯, 杨传路, 李西军, 等. 液氩多体作用势研究及其Hugoniot曲线的分子动力学模拟 [J]. 物理学报, 2000, 49(1): 114-118.
[6]  Tan H. Shock Temperature Measurements for Metals (Ⅰ)-Calibration of Pyrometers and Data Reduction for the Temperature at the Interface [J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254-263. (in Chinese)
[7]  谭华. 金属的冲击波温度测量(Ⅰ)--高温计的标定和界面温度的确定 [J]. 高压物理学报, 1994, 8(4): 254-263.
[8]  Meng Ch M, Shi Sh Ch, Dong Sh, et al. Equation of State of Dense Liquid Nitrogen in the Region of the Dissociative Phase Transition [J]. Chin Phys Lett, 2002, 19: 252-254.
[9]  Shi Sh Ch, Dong Sh, Huang Y. The Experimental Technology for Shock-Compressed Liquid Gas [J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 211-217. (in Chinese)
[10]  施尚春, 董石, 黄跃. 液态气体冲击压缩实验技术 [J]. 高压物理学报, 1999, 13(3): 211-217.
[11]  Meng Ch M, Shi Sh Ch, Dong Sh, et al. Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon up to 46 GPa [J]. Chin Phys Lett, 2003, 20: 1221-1222.
[12]  Ross M, Alder B J. Shock Compression of Argon(Ⅲ)-The Thomas-Fermi-Dirac Theory [J]. J Chem Phys, 1967, 47(10): 4129-4133.
[13]  Karnicky J F, Reamer H H, Pings C J. Determination of the Argon Intermolecular Pair Potential by X-Ray Diffraction from the Dense Gas [J]. J Chem Phys, 1976, 64(11): 4592-4600.
[14]  Nellis W J, Mitchell A C. Shock Compression of Liquid Argon, Nitrogen, and Oxygen to 90 GPa (900kbar) [J]. J Chem Phys, 1980, 73(12): 6137-6145.
[15]  Ross M. Shock Compression and the Melting Curve for Argon [J]. Phys Rev, 1973, A8: 1466-1474.
[16]  Ross M. The Repulsive Forces in Dense Argon [J]. J Chem Phys, 1980, 73(9): 4445-4450.
[17]  Dick R D, Warmes R H, Skalyo J. Shock Compression of Solid Argon [J]. J Chem Phys, 1970, 53: 1648-1651.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133