全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

β-MnO2高压相的从头计算模拟

DOI: 10.11858/gywlxb.2006.03.011, PP. 285-290

Keywords: 从头计算,金红石结构,二氧化锰,压致相变

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于密度泛函理论(DFT),用完全势能线性缀加平面波方法(FPLAPW)计算模拟了MnO2的同质多相变体(金红石型结构、CaCl2型结构、黄铁矿型结构),通过计算,预测了β-MnO2在5GPa时从金红石型结构转变为CaCl2型结构,在20GPa时进一步转变为黄铁矿型结构。另外,还总结和比较了几种金红石型结构二氧化物的压致相变特点,得出第Ⅳ主族元素的金红石型结构氧化物有很好的规律性,发生的相变序列基本一致;并随着金属阳离子半径的增大,发生相变的压力值也相应地递减,各氧化物的体积模量值相应地减小。

References

[1]  Andrault D, Fiquet G, Guyot F, et al. Pressure-Induced Landau-Type Transition in Stishovite [J]. Science, 1998, 282: 720-724.
[2]  Oganov A R, Price G D. Ab Initio Thermodynamics of MgSiO3 Perovskite at High Pressures and Temperatures [J]. J Chem Phys, 2005, 122: 124501(1)-124501(6).
[3]  Chen M, Xie X D. Progress in Searching Natural High-Pressure Minerals and Its Significance in the Earth's Mantle Mineralogy [J]. Geological J China Univer, 2000, 6: 121-125. (in Chinese)
[4]  陈鸣, 谢先德. 天然高压矿物研究的新进展及其在地幔矿物学中的意义 [J]. 高校地质学报, 2000, 6: 121-125.
[5]  Oganov A R, Gillan M J, Price G D. Structural Stability of Silica at High Pressures and Temperatures [J]. Phys Rev B, 2005, 71: 064104(1)-064104(2).
[6]  Prakapenka V B, Shen G, Dubrovinsky L S, et al. High Pressure Induced Phase Transformation of SiO2 and GeO2: Difference and Similarity [J]. J Phys Chem Solid, 2004, 65: 1537-1545.
[7]  Kuwayama Y, Hirose K, Sata N, et al. The Pyrite-Type High-Pressure Form of Silica [J]. Science, 2005, 309: 923-925.
[8]  Karki B B, Warren M C, Stixrude L, et al. Ab Initio Studies of High-Pressure Structural Transformations in Silica [J]. Phys Rev B, 1997, 55: 3465-3471.
[9]  Teter D M, Hemley R J. High Pressure Polymorphism in Silica [J]. Phys Rev Lett, 1998, 80: 2145-2148.
[10]  Haines J, Leger J M, Chateau C, et al. Structural Evolution of Rutile-Type and CaCl2-Type Germanium Dioxide at High Pressure [J]. Phys Chem Mine, 2000, 27: 575-582.
[11]  Prakapenka V B, Dubrovinsky L S, Shen G, et al. α-PbO2-Type High-Pressure Polymorph of GeO2 [J]. Physical Review B, 2003, 67: 132101(1)-132101(4).
[12]  odziana Z, Parlinski K. Ab Initio Studies of High-Pressure Transformations in GeO2 [J]. Phys Rev B, 2001, 63: 134106(1)-134106(7).
[13]  Haines J, Leger J M, Hoyau S. Second-Order Rutile-Type to CaCl2-Type Phase Transition in β-MnO2 at High Pressure [J]. J Phys Chem Solid, 1995, 6: 965-973.
[14]  Lee H F. Compression Studies of Rutile-Structure Dioxides [D]. Taiwan: Department of Earth Sciences National Cheng Kung University, 2002. (in Chinese)
[15]  李秀芳. 金红石结构双氧化合物之压缩研究 [D]. 台湾: 国立成功大学地球科学研究所, 2002.
[16]  Liu L. Synthesis of a New High-Pressure Phase of Manganese Dioxide [J]. Earth Planet Science Letter, 1976, 29: 104-106.
[17]  Haines J, Leger J M. Phase Transitions in Ruthenium Dioxide up to 40 GPa: Mechanism for the Rutile-to-Fluorite Phase Transformation and Model for the High-Pressure Behavior of Stishovite SiO2 [J]. Phys Rev B, 1993, 48: 13344-13350.
[18]  Ahuja R, Rekhi S, Saxena S K, et al. High-Presssure Structural Transitions in RuO2 and Its Geophysical Implications [J]. J Phys Chem Solids, 2001, 62: 2035-2037.
[19]  Benyahia K, Nabi Z, Tadier A, et al. Ab Initio Study of the Structural and Electronic Properties of the Complex Structures of RuO2 [J]. Phys B, 2003, 339: 1-10.
[20]  Haines J, Leger J M, Schulte O. Pa-3 Modified Fluorite-Type Structures in Metal Dioxides at High Pressure [J]. Science, 1996, 271: 629-631.
[21]  Haines J, Leger J M. X-Ray Diffraction Study of the Phase Transitions and Structural Evolution of Tin Dioxide at High Pressure: Relationships between Structure Types and Implications [J]. Phys Rev B, 1997, 55: 11144-11154.
[22]  Ono S, Ito E, Katsura T, et al. Thermoelastic Properties of the High-Pressure Phase of SnO2 Determined by in Situ X-Ray Observations up to 30 GPa and 1400 K [J]. Phys Chem Minerals, 2000, 27(9): 618-622.
[23]  Ono S, Funakoshi K, Nozawa A, et al. High-Pressure Phase Transitions in SnO2 [J]. J Appl Phys, 2005, 97: 073523(1)-073523(5).
[24]  Hassan F, Alaeddine A, Zoaeter M, et al. First-Principles Investigation of SnO2 at High Pressure [J]. Inter J Modern Phys B, 2005, 19(27): 4081-4092.
[25]  Haines J, Leger J M, Schulte O. The High-Pressure Phase Transition Sequence from the Rutile-Type through to the Cotunnite-Type Structure in PbO2 [J]. J Phys: Conden Matt, 1996, 8: 1631-1646.
[26]  Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides [J]. Acta Crysta, 1976, A32: 751-767.
[27]  Schwarz K. DFT Caculations of Solids with LAPW and WIEN2K [J]. J Solid State Chem, 2003, 176: 319-328.
[28]  Schwarz K, Blaha P. Solid State Calculations Using WIEN2K [J]. Comp Mater Sci, 2003, 28: 259-273.
[29]  Wu X, Qin Sh, Wu Z Y. Application of ab Initio Calculation in Pressure-Induced Phase Transitions of Minerals [J]. Geological Science and Technology Information, 2005, 24(3): 26-31. (in Chinese)
[30]  巫翔, 秦善, 吴自玉. 从头计算在矿物压致相变研究中的应用 [J]. 地质科技情报, 2005, 24(3): 26-31.
[31]  Dubrovinskaia N A, Dubrovinsky L S. High-Presssure Silica Polymorphs as Hardest Known Oxides [J]. Materials Chem Phys, 2001, 68: 77-79.
[32]  Jolly L H, Silvi B, D'arco P. Periodic Hartree-Fock Study of Minerals: Hexacoordinated SiO2 and GeO2 Polymorphs [J]. Euro J Mineralogy, 1994, 6: 7-16.
[33]  Xu J H, Jarlborg, Freeman A J. Self-Consistent Band Structure of the Rutile Dioxides NbO2, RuO2 and IrO2 [J]. Phys Rev B, 1989, 40: 7939-7947.
[34]  Haines J, Leger J M. Phase Transitions in Ruthenium Dioxide up to 40 GPa: Mechanism for the Rutile-to-Fluorite Phase Transformation and Model for the High-Pressure Behavior of Stishovite SiO2 [J]. Phys Rev B, 1993, 48: 13344-13350.
[35]  Ahuja R, Rekhi S, Saxena S K, et al. High-Presssure Structural Transitions in RuO2 and Its Geophysical Implications [J]. J Phys Chem Solids, 2001, 62: 2035-2037.
[36]  Benyahia K, Nabi Z, Tadier A, et al. Ab Initio Study of the Structural and Electronic Properties of the Complex Structures of RuO2 [J]. Phys B, 2003, 339: 1-10.
[37]  Haines J, Leger J M, Schulte O. Pa-3 Modified Fluorite-Type Structures in Metal Dioxides at High Pressure [J]. Science, 1996, 271: 629-631.
[38]  Haines J, Leger J M. X-Ray Diffraction Study of the Phase Transitions and Structural Evolution of Tin Dioxide at High Pressure: Relationships between Structure Types and Implications [J]. Phys Rev B, 1997, 55: 11144-11154.
[39]  Ono S, Ito E, Katsura T, et al. Thermoelastic Properties of the High-Pressure Phase of SnO2 Determined by in Situ X-Ray Observations up to 30 GPa and 1400 K [J]. Phys Chem Minerals, 2000, 27(9): 618-622.
[40]  Ono S, Funakoshi K, Nozawa A, et al. High-Pressure Phase Transitions in SnO2 [J]. J Appl Phys, 2005, 97: 073523(1)-073523(5).
[41]  Hassan F, Alaeddine A, Zoaeter M, et al. First-Principles Investigation of SnO2 at High Pressure [J]. Inter J Modern Phys B, 2005, 19(27): 4081-4092.
[42]  Haines J, Leger J M, Schulte O. The High-Pressure Phase Transition Sequence from the Rutile-Type through to the Cotunnite-Type Structure in PbO2 [J]. J Phys: Conden Matt, 1996, 8: 1631-1646.
[43]  Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides [J]. Acta Crysta, 1976, A32: 751-767.
[44]  Schwarz K. DFT Caculations of Solids with LAPW and WIEN2K [J]. J Solid State Chem, 2003, 176: 319-328.
[45]  Schwarz K, Blaha P. Solid State Calculations Using WIEN2K [J]. Comp Mater Sci, 2003, 28: 259-273.
[46]  Wu X, Qin Sh, Wu Z Y. Application of ab Initio Calculation in Pressure-Induced Phase Transitions of Minerals [J]. Geological Science and Technology Information, 2005, 24(3): 26-31. (in Chinese)
[47]  巫翔, 秦善, 吴自玉. 从头计算在矿物压致相变研究中的应用 [J]. 地质科技情报, 2005, 24(3): 26-31.
[48]  Dubrovinskaia N A, Dubrovinsky L S. High-Presssure Silica Polymorphs as Hardest Known Oxides [J]. Materials Chem Phys, 2001, 68: 77-79.
[49]  Jolly L H, Silvi B, D'arco P. Periodic Hartree-Fock Study of Minerals: Hexacoordinated SiO2 and GeO2 Polymorphs [J]. Euro J Mineralogy, 1994, 6: 7-16.
[50]  Xu J H, Jarlborg, Freeman A J. Self-Consistent Band Structure of the Rutile Dioxides NbO2, RuO2 and IrO2 [J]. Phys Rev B, 1989, 40: 7939-7947.
[51]  Murakami M, Hirose K, Kawamura K, et al. Post-Pervoskite Phase Transition in MgSiO3 [J]. Science, 2004, 204: 855-858.
[52]  Saxena S K, Dubrovinsky L S, Lazor P, et al. Stability of Perovskite (MgSiO3) in the Eath's Mantle [J]. Science, 1996, 274: 1357-1359.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133