全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

岩石Hopkinson层裂的流形元法模拟

DOI: 10.11858/gywlxb.2006.04.003, PP. 353-358

Keywords: Hopkinson层裂,冲击载荷,流形元,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用二阶流形元法,通过引入裂纹产生及扩展判据,对冲击载荷作用下岩石Hopkinson动态层裂过程进行了数值模拟,再现了拉伸波作用下Hopkinson层裂过程,计算得到的层裂片厚度和速度等与理论值符合较好,验证了流形元法在模拟冲击载荷作用下材料动态破坏过程方面的有效性和优越性。

References

[1]  Wang L L. Foundation of Stress Waves [M]. Beijing: National Defense Industry Press, 1985. (in Chinese)
[2]  王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985.
[3]  Hu S S, Zhang L, Wu H J, et al. Experimental Study on Spalling Strength of Concrete [J]. Engineering Mechanics, 2004, 21(4): 128-132. (in Chinese)
[4]  胡时胜, 张磊, 武海军, 等. 混凝土层裂强度的实验研究 [J]. 工程力学, 2004, 21(4): 128-132.
[5]  Wang L M, Zhao J, Hua A Z, et al. Research on SHPB Testing Technique for Brittle Material [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1798-1802. (in Chinese)
[6]  王鲁明, 赵坚, 华安增, 等. 脆性材料SHPB实验技术的研究 [J]. 岩石力学与工程学报, 2003, 22(11): 1798-1802.
[7]  Li W, Xie H P, Wang Q Z. Experimental Study for Dynamic Tensile Strength and Elastic Modulus of Marble Using SHPB [J]. Journal of Experimental Mechanics, 2005, 20(2): 200-206. (in Chinese)
[8]  李伟, 谢和平, 王启智. 大理岩动态拉伸强度及弹性模量的SHPB实验研究 [J]. 实验力学, 2005, 20(2): 200-206.
[9]  Wu X T, Hu S S, Yang B Y, et al. An Improvement in Measuring the Dynamic Properties of Concrete Material by the Traditional SHPB Technique [J]. Journal of Hefei University of Technology, 2004, 27(1): 63-66. (in Chinese)
[10]  巫绪涛, 胡时胜, 杨伯源, 等. SHPB技术研究混凝土动态力学性能存在的问题和改进 [J]. 合肥工业大学学报, 2004, 27(1): 63-66.
[11]  Zhang G X, Zhou L B, Zhu B F, et al. Simulation of Cracking with Manifold Method for Wuqiangxi Shiplock [J]. Journal of Hydraulic Engineering, 2003, 11: 37-42. (in Chinese)
[12]  张国新, 周立本, 朱伯芳, 等. 五强溪船闸裂缝的流形元模拟 [J]. 水利学报, 2003, 11: 37-42.
[13]  Shi G H. Manifold Method of Material Analysis [A]//Transactions of the Ninth Army Conference on Applied Mathematics and Computing [C]. Minneapolish, Minncsoda, USA, 1992: 51-76.
[14]  Shi G H. Numerical Manifold Method and Discontinuous Deformation Analysis [M]. Translated by Pei J M. Beijing: Tsinghua University Press, 1997. (in Chinese)
[15]  石根华. 数值流形方法与非连续变形分析 [M]. 裴觉民, 译. 北京: 清华大学出版社, 1997.
[16]  He C Y, Wu X, Wu Y P. Numerical Simulation of Landslide on the Right Bank at Pingban Station by Using Manifold Method [J]. Journal of China Institute of Water Resources and Hydropower Research, 2004, 2(2): 120-123. (in Chinese)
[17]  何传永, 武雄, 吴永平. 平班水电站右岸滑坡流形元法数值模拟 [J]. 中国水利水电科学研究院学报, 2004, 2(2): 120-123.
[18]  Zhang G X, Sujiura Y, Saito K. Application of Manifold Method to Jointed Dam Foundation [A]//Amadei B. Proceedings of the 3rd International Conference on Analysis of Discontinuous Deformation from Theory to Practice [C]. Vail, Coloraclo: The Montana Oil Journal Inc, 1999.
[19]  Zhang G X, Sugiura Y, Hasegawa H, et al. The Second Order Manifold Method with Six Node Triangle Mesh [J]. J Struct Mech Earthquake Eng, JSCE, 2002, 696/Ⅰ-58: 1-9.
[20]  Zhang G X, Peng J. Second-Order Manifold Method in Structure Failure Analysis [J]. Acta Mechanic Sinica, 2002, 34(2): 261-269. (in Chinese)
[21]  张国新, 彭静. 二阶流形元与结构变形分析 [J]. 力学学报, 2002, 34(2): 261-269.
[22]  Zhang G X. Sugiura Y, Hasegawa H. Fracture Simulation Using Manifold and Singular Boundary Element Method [J]. J Geotech Eng, JSCE, 1999, 624/Ⅲ-47: 1-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133