全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究

DOI: 10.11858/gywlxb.2007.01.010, PP. 59-65

Keywords: 位错,断裂,分子动力学,纳米孔洞

Full-Text   Cite this paper   Add to My Lib

Abstract:

用分子动力学方法计算模拟了沿〈111〉晶向冲击加载过程中,单晶铜中纳米孔洞(直径约1.3nm)的演化及其周围区域发生塑性变形的过程。模拟结果表明,在沿〈111〉晶向冲击加载后,在面心立方(fcc)结构中的4族{111}晶面中有3族发生了滑移。伴随孔洞的增长,在所激活的3族{111}晶面上,观察到位错在孔洞表面附近区域成核,然后向外滑移,其中在剪切应力最大的〈112〉方向上,其位错速度超过横波声速,其它〈112〉方向的位错速度低于横波声速。模拟得到的位错阻尼系数范围与实验值基本符合。由于孔洞周围产生的滑移在空间比较对称,孔洞增长形貌接近球形。在恒定的冲击强度下,孔洞半径增长速率近似保持恒定,其速率随着冲击强度的增加而增大。

References

[1]  Seaman L, Curran D R, Shockey D A. Computational Models for Ductile and Brittle Fracture [J]. J Appl Phys, 1976, 47(11): 4814-4826.
[2]  Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials [J]. J Appl Phys, 1972, 43: 1626-1636.
[3]  Zhou S J, Beazley D M, Lomdahl P S, et al. Large-Scale Molecular Dynamics Simulations of Three-Dimensional Ductile Failure [J]. Phys Rev Lett, 1996, 78: 479-482.
[4]  Seppala E T, Belak J, Rudd R E. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals [J]. Phys Rev Lett, 2005, 93: 245503.
[5]  Holian B L, Lomdahl P S. Plasticity Induced by Shock Waves in Nonequilibrium Molecular-Dynamics Simulations [J]. Science, 1998, 280: 2085-2088.
[6]  Yamakov V, Saether E, Philips D R, et al. Dynamic Instability in Intergranular Fracture [J]. Phys Rev Lett, 2005, 95: 015502.
[7]  Davila L P, Erhart P, Bringa E M, et al. Atomistic Modeling of Shock-Induced Void Collapse in Copper [J]. Appl Phys Lett, 2005, 86: 161902.
[8]  Lubarda V A, Schneider M S, Kalantar D H, et al. Void Growth by Dislocation Emission [J]. Acta Mater, 2004, 52: 1397-1408.
[9]  Marian J, Knap J, Ortiz M. Nanovoid Cavitation by Dislocation Emission in Aluminum [J]. Phys Rev Lett, 2004, 93: 165503.
[10]  Rauf G M, Maroudas D. Atomistic Mechanism of Strain Relaxation due to Ductile Void Growth in Ultrathin Films of Face-Centered-Cubic Metals [J]. J Appl Phys, 2005, 97: 113527.
[11]  Luo J, Zhu W J, Lin L B, et al. Molecular Dynamics Simulation of Void Growth in Single Crystal Copper under Uniaxial Impacting [J]. Acta Phys Sin, 2005, 54: 2791-2798. (in Chinese)
[12]  罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54: 2791-2798.
[13]  Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations [J]. Phys Rev B, 2001, 63: 224106.
[14]  Bringa E M, Cazamias J U, Erhart P, et al. Atomistic Shock Hugoniot Simulation of Single-Crystal Copper [J]. J Appl Phys, 2004, 96: 3793-3798.
[15]  Wan F R. Radiation Damage of Metals [M]. Beijing: Science Press, 1993: 101-102. (in Chinese)
[16]  万发荣. 金属材料的辐照损伤 [M]. 北京: 科学出版社, 1993: 101-102.
[17]  Curran D R, Seaman L. Dynamic Failure of Solids [J]. Physical Reports, 1987, 147: 253-388.
[18]  Hoover W G. Computational Statistical Mechanics [M]. Netherlands Elsevier: Science Publishers B V, 1991: 140-145.
[19]  Zhou S J, Preston D L, Lomdahl P S, et al. Large-Scale Molecular Dynamics Simulations of Dislocation Intersection in Copper [J]. Science, 1998, 279: 1525-1527.
[20]  Hirth J P, Loyhe J. Theory of Dislocations [M]. New York: Wiley, 1982: 267-275.
[21]  Gumbsch P, Gao H J. Dislocations Faster than the Speed of Sound [J]. Science, 1999, 283: 965-968.
[22]  Jones O E, Mote J D. Shock-Induced Dynamic Yielding in Copper Single Crystals [J]. J Appl Phys, 1969, 40: 4920-4928.
[23]  Mordehai D, Ashkenazy Y, Kelson I. Dynamic Properties of Screw Dislocations in Cu: A Molecular Dynamics Study [J]. Phys Rev B, 2003, 7: 024112.
[24]  Clarke A S, Jonsson H. Structural Changes Accompanying Densification of Random Hard-Sphere Packings [J]. Phys Rev E, 1991, 47: 3975-3984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133