全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

立方氮化硅及其冲击波合成

DOI: 10.11858/gywlxb.2007.01.001, PP. 1-7

Keywords: 立方氮化硅,冲击波压缩,合成

Full-Text   Cite this paper   Add to My Lib

Abstract:

立方氮化硅是高温高压研究近期合成得到的一种新物相,与已经在工业上普遍使用的氮化硅的两种六方物相(α相和β相)相比,新物相的密度增加了26%,预期是一种新型功能材料。简要综述了立方氮化硅的研究进展和存在的问题,讨论了立方氮化硅的人工合成和相关物性研究、Ⅳ(A)族氮化物(Ge3N4、Sn3N4、C3N4)的高密度物相研究,以及后尖晶石相氮化物的实验和理论探索等问题。介绍了作者最近利用炸药爆轰加载技术开展的冲击波合成实验结果,以α相氮化硅为冲击压缩前驱体,实现了在单次冲击波压缩实验中合成出了克量级立方氮化硅粉体,为进一步开展立方氮化硅的性能研究奠定了基础。

References

[1]  Zerr A, Miehe G, Serghious G, et al. Synthesis of Cubic Silicon Nitride [J]. Nature (London), 1999, 400: 340-342.
[2]  Brook R J. Superhard Ceramics [J]. Nature (London), 1999, 400: 312-315.
[3]  Mo S-D, Ouyang L, Ching W Y, et al. Interesting Properties of New Spinel Phase of Si3N4 and C3N4 [J]. Phys Rev Lett, 1999, 83: 5046-5049.
[4]  Sekine T, He H L, Kobayashi T, et al. Shock-Induced Transformation of β-Si3N4 to a High-Pressure Cubic-Spinel Phase [J]. Appl Phys Lett, 2000, 76: 3706-3708.
[5]  Jiang J Z, Stahl K, Berg R W, et al. Structural Characterization of Cubic Silicon Nitride [J]. Europhys Lett, 2000, 51: 62-67.
[6]  Schwarz M, Miehe G, Zerr A, et al. Spinel-Si3N4: Multi-Anvil Press Synthesis and Structural Refinement [J]. Advanced Mater, 2000, 12: 883-887.
[7]  McMillan P F. New Materials from High-Pressure Experiments [J]. Nature materials, 2002, 1: 19-25.
[8]  Sekine T, Mitsuhashi T. High-Temperature Metastability of Cubic Spinel Si3N4 [J]. Appl Phys Lett, 2001, 79: 2719-2721.
[9]  Jiang J Z, Kragh F, Frost D J, et al. Hardness and Thermal Stability of Cubic Silicon Nitride[J]. J Phys: Condens Matter, 2001, 13: L515-L520.
[10]  Jiang J Z, Lindelov H, Gerward L, et al. Compressibility and Thermal Expansion of Cubic Silicon Nitride [J]. Phys Rev B, 2002, 65: 161202(1)-161202(4).
[11]  Hintzen H T, Hendrix M R M M, Wondergem H, et al. Thermal Expansion of Cubic Si3N4 with the Spinel Structure [J]. J Alloys Compounds, 2003, 351: 40-42.
[12]  He H L, Sekine T, Kobayashi T, et al. Shock-Induced Phase Transition of β-Si3N4 to c-Si3N4 [J]. Phys Rev B, 2000, 62(17): 11412-11417.
[13]  Kiefer B, Shieh S R, Duffy T S, et al. Strength, Elasticity, and Equation of State of the Nanocrystalline Cubic Silicon Nitride γ-Si3N4 to 68 GPa [J]. Phys Rev B, 2005, 72(1): 014102(1)-014102(9).
[14]  Zerr A, Kempf M, Schwarz M, et al. Elastic Moduli and Hardness of Cubic Silicon Nitride [J]. J Am Ceram Soc, 2002, 85: 86-90.
[15]  Mori-Sánchez P, Marqués M, Beltrán A, et al. Origin of the Low Compressibility in Hard Nitride Spinels [J]. Phys Rev B, 2003, 68(6): 064115(1)-064115(5).
[16]  He J L, Guo L C, Yu D L, et al. Hardness of cubic Spinel Si3N4 [J]. Appl Phys Lett, 2004, 85(23): 5571-5573.
[17]  Dong J J, Deslippe J, Sankey O F, et al. Theoretical Study of the Ternary Spinel Nitride System Si3N4-Ge3N4 [J]. Phys Rev B, 2003, 67(9): 094104(1)-094104(7).
[18]  Tanaka I, Mizoguchi T, Sekine T, et al. Electron Energy Loss Near-Edge Structures of Cubic Si3N4 [J]. Appl Phys Lett, 2001, 78: 2134-2136.
[19]  Sekine T, Tansho M, Kanzaki M. Si Magic-Angle-Spinning Nuclear-Magnetic-Resonance Study of Spinel-Type Si3N4 [J]. Appl Phys Lett, 2001, 78: 3050-3051.
[20]  Fang C M, de Wijs G A, Hintzen H T, et al. Phonon Spectrum and Thermal Properties of Cubic Si3N4 from First-Principles Calculations [J]. J Appl Phys, 2003, 93: 5175-5180.
[21]  Oba F, Tazuyoshi K, Adachi H, et al. n- and p-Type Dopants for Cubic Silicon Nitride [J]. Appl Phys Lett, 2001, 78: 1557-1579.
[22]  Serghiou G, Miehe G, Tschauner O, et al. Synthesis of a Cubic Ge3N4 Phase at High Pressures and Temperatures [J]. J Chem Phys, 1999, 111: 4659-4662.
[23]  Leinenweber K, O'Keeffe M, Somayazulu M, et al. Synthesis and Structure Refinement of the Spinel, γ-Ge3N4 [J]. Chem Eur J, 1999, 5: 3076-3080.
[24]  He H L, Sekine T, Kobayashi T, et al. Phase Transformation of Germanium Nitride (Ge3N4) under Shock Wave [J]. J Appl Phys, 2001, 90: 4403-4406.
[25]  Shemkunas M P, Wolf G H, Leinenweber K, et al. Rapid Synthesis of Crystalline Spinel Tin Nitride by a Solid-State Metathesis Reaction [J]. J Am Ceram Soc, 2002, 85: 101-104.
[26]  Liu A Y, Cohen M L. Prediction of New Low Compressibility Solids [J]. Science, 1989, 245: 841-842.
[27]  Teter D M, Hemley R J. Low-Compressibility Carbon Nitrides [J]. Science, 1996, 271: 53-55.
[28]  Matsumoto S, Xie E-Q, Izumi F. On the Validity of the Formation of Crystalline Carbon Nitrides, C3N4 [J]. Diamond Relat Mater, 1999, 8: 1175-1182.
[29]  Malkow T. Critical Observations in the Research of Carbon Nitride [J]. Mater Sci Eng, 2000, A292: 112-124.
[30]  Ching W Y, Mo S-D, Tanaka I, et al. Prediction of Spinel Structure and Properties of Single and Double Nitrides [J]. Phys Rev B, 2001, 63: 064102(1)-064102(4).
[31]  Sanchez P M, Marques M, Beltran A, et al. Origin of the Low Compressibility in Hard Nitride Spinels [J]. Phys Rev B, 2003, 68: 064115(1)-064115(5).
[32]  Schnick W. The First Nitride Spinels-New Synthetic Approaches to Binary Group 14 Nitrides [J]. Angew Chem Int Ed, 1999, 38: 3309-3310.
[33]  Fei Y, Frost D J, Mao H K, et al. In Situ Structure Determination of the High-Pressure Phase of Fe3O4 [J]. Am Miner, 1999, 84: 203-206.
[34]  Shim S-H, Duffy T S, Shen G Y. The Post-Spinel Transformation in Mg2SiO4 and Its Relation to the 660 km Seismic Discontinuity [J]. Nature (London), 2001, 411: 571-574.
[35]  Tatsumi K, Tanaka I, Adachi H, et al. Theoretical Prediction of Post-Spinel Phase of Silicon Nitride [J]. J Am Ceram Soc, 2002, 85: 7-10.
[36]  Liu Y Sh, Yao H, Zhang F P, et al. Experiment Research on Shock Synthesis of Cubic Silicon Nitride [J]. Journal of Inorganic Materials, 2007, 22(1): 159-162. (in Chinese)
[37]  刘雨生, 姚怀, 张福平, 等. 立方氮化硅的冲击波合成实验研究 [J]. 无机材料学报, 2007, 22(1): 159-162.
[38]  DeCarli P S, Jamieson J C. Formation of Diamond by Explosive Shock [J]. Science, 1961, 133: 1821-1823.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133