全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在200GPa冲击压强下铁是否会发生固-固相变?

DOI: 10.11858/gywlxb.2007.02.015, PP. 205-209

Keywords: ,高压相变,状态方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据Grüneisen物态方程、Hugoniot内能守恒方程和最新发表的铁的热物理参数,计算了ε-(hcp)铁和液态铁的理论Hugoniot曲线。计算的Hugoniot曲线与最新修正的铁的实验数据[JApplPhys,2000,88:5496]在总体上符合很好,并且可以细分为两个部分:在约低于200GPa的压强区,用ε-铁模型的计算结果与实验结果符合很好;在约高于260GPa的压强区,用液态铁模型的计算结果与实验数据也符合得比较好;对介于200~260GPa之间的压强区,则归属于由ε-铁向液态铁转变的混合相区。这意味着铁的Hugoniot曲线在约200GPa处出现的微小偏折是由固-液相变引起的,从而否定了Brown[GeophyResLett,2001,28:4339]提出的它是一次由ε-铁向另一个未知结构的某个固相铁的相转变的见解。

References

[1]  Birch F. Elasticity and Constitution of the Earth's Interior [J]. J Geophys Res, 1952, 20: 227- 286.
[2]  Song X, Helmberger D V. Seismic Evidence for an Inner Core Transition Zone [J]. Science, 1998, 282: 924- 27.
[3]  Anderson O L. The Phase Diagram of Iron and the Temperature of the Inner Core [J]. J Geomagn Geoelectr, 1993, 45: 1235-1248.
[4]  Brown J M, McQueen R G. Phase Transitions, Grüneisen Parameter, and Elasticity for Shocked Iron between 77 GPa and 400 GPa [J] . J Geophys Res, 1986, 91: 7485-7494.
[5]  Williams Q, Jeanloz R, Bass J, et al. The Melting Curve of Iron to 250 GPa: A Constraint on Temperature at Earth's Center [J]. Science, 1987, 236: 181-183.
[6]  Andrault D, Fiquet G, Charpin T, et al. Structure Analysis and Stability Field of β-Iron at High p and T [J]. Am Mineral, 2000, 85: 364-371.
[7]  Shen G, Mao H K, Hemley R J, et al. Melting and Crystal Structure of Iron at High Pressures and Temperatures [J]. Geophys Res Lett, 1998, 25(3): 373-376.
[8]  Ma Y Z, Maddury S M, Shen G, et al. In Situ X-Ray Diffraction Studies of Iron to Earth-Core Conditions [J]. Phys Earth Planet Inter, 2004, 143: 455-467.
[9]  Nguyen J H, Holmes N C. //Furnish M D, Chhabildas L C, Hixson R, et al. Shock Compression of Condensed Matter-1999 [C]. New York: AIP Melville, 2000: 81-84.
[10]  Nguyen J H, Holmes N C. Melting of Iron at the Physical Conditions of the Earth's Core [J]. Nature, 2004, 427: 339-342.
[11]  Huang H J, Cai C L, Bi Y, et al. Grüneisen Parameter along Hugoniot and Melting Temperature of ε-Iron: A Thermodynamic Computational Method [J]. Chin Phys Lett, 2005, 22: 836-838.
[12]  Sun Y H, Huang H J, Liu F S, et al. A Direct Comparison between Static and Dynamic Melting Temperature Determinations below 100 GPa [J]. Chin Phys Lett, 2005, 22: 2002-2004.
[13]  Brown J M. The Equation of State of Iron to 450 GPa: Another High Pressure Solid Phase? [J]. Geophys Res Lett, 2001, 28: 4339-4342.
[14]  Brown J M, Fritz J N, Hixson R S. Hugoniot Data for Iron [J]. J Appl Phys, 2000, 88: 5496-5498.
[15]  McQueen R G, Fritz J N, Marsh S P. On the Equation of State of Stishovite [J]. J Geophys Res, 1963, 68: 2319- 2322.
[16]  McQueen R C, Marsh S P, Fritz J N. Hugoniot Equation of State of Twelve Rocks [J]. J Geophys Res, 1967, 72: 4999-5036.
[17]  Anderson O L, Dubrovinsky L, Saxena S K, et al. Experimental Vibrational Grüneisen Ratio Values for ε-iron up to 330 GPa at 300 K [J]. Geophys Res Lett, 2001, 28: 399-402.
[18]  Uchida T, Wang Y B, Rivers M L, et al. Stability Field and Thermal Equation of State of ε-Iron Determined by Synchrotron X-Ray Diffraction in a Multianvil Apparatus [J]. J Geophys Res, 2001, 106: 21799-21810.
[19]  Anderson O L. The Power Balance at the Core-Mantle Boundary [J]. Phys Earth Planet Inter, 2002, 131: 1-17.
[20]  Boness D A, Brown J M, McMahan A K. The Electronic Thermodynamics of Iron under Earth Core Conditions [J]. Phys Earth Planet Inter, 1986, 42: 227-240.
[21]  Grover R. Liquid Metal Equation of State Based on Scaling [J]. J Chem Phys, 1971, 55: 3435.
[22]  Wallace D C. Melting of Elements [J]. Proc Roy Soc Lond, 1991, 433(A): 631-661.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133