Shih C J, Meyers M A, Nesterenko V F, et al. Damage Evolution in Dynamic Deformation of Silican Carbide [J]. Acta Mater, 2000, 48: 2399-2420.
[6]
Jiang B, Weng G J. A Theory of Compressive Yield Strength of Nano-Grained Ceramics [J]. International Journal of Plasticy, 2004, 20: 2007-2026.
[7]
Karch J, Birringer R, Gleiter H. Ceramics Ductile at Llow Temperature [J]. Nature, 1987, 330: 556-558.
[8]
Kirchheim R, Mutschele T, Kieninger W. Hydrogen in Amorphous and Nanocrystalline Metals [J]. Material Science and Engneering, 1988, 99: 457-462.
[9]
Djurado E, Boulc'h F, Pivkina A, et al. Cold Isostatic and Explosiveisodynamic Compaction of Y-TZP Nanoparticles [J]. Solid State Ionics, 2002, (154-155): 375-380.
[10]
Mamalis A G. Manufacturing of Bulk High-Tc Superconductors [J]. International Journal of Inorganic Material, 2000, 2: 623-633.
[11]
Counihan P J, Crawford A, Thadhani N N. Influence of Dynamic Densification on Nanostructure Formation in Ti5Si3 Intermetallic Alloy and Its Bulk Properties [J]. Material Science and Engneering, 1999, A267: 26-35.
[12]
Shang S S, Hokamoto K, Meyers M. A. Hot Dynamic Consolidation of Hard Ceramics [J]. J Mater Sci, 1992, 27, 5470-5476
[13]
Hokamoto K, Tanaka S, Fujita M, et al. High Temperature Shock Consolidation of Hard Ceramic Powders [J]. Physica, 1997, B239: 1-5.
[14]
Prummer R, Weinor P. Explosive Consolidation of Nanopowders [J]. Interceram, 2002, 51(6): 394-398.
[15]
Zhang D, Wu M S, Feng R. Micromechanical Investigation of Heterogeneous Microplasticity in Ceramics Deformed under High Confining Stresses [J]. Mechanics of Materials, 2005, 37: 95-112.
[16]
Grady D E. Local Inertia Effects Indynamic Fragmentation [J]. J Appl Phys, 1982, 68: 322-325.
[17]
Kipp M E, Grady D E. Dynamic Fracture Growth and Interaction in One Dimension [J]. Physics Mechanics Solids, 1985, 33: 399-415.
[18]
Schwarz R B, Kasiraj P, Vreeland T, et al. A Theory for the Shock-Wave Consolidation of Powders [J]. Acta Metal, 1984, 32(8): 1243-1252.
[19]
Nemat-Nasser S, Deng H. Strain-Rate Effect on Brittle Failure in Compression [J]. Acta Metall Mater, 1994, 42(3): 1013-1024.
[20]
Ravichandran G, Subhash G. A Micromechanical Model for High Strain Rate Behavior of Ceramics [J]. International Journal of Solids Structures, 1995, 32(17/18): 2627-2646.
[21]
Mamais A G, Vottea I N, Manolakos D E. On the Modeling of the Compaction Mechanism of Shock Compacted Powder [J]. Journal of Materials Processing Technology, 2001, 108: 165-178.
[22]
Meyers M A, Bendon D J, Olevsky E A. Shock Consolidation: Microstructurally-Based Analysis and Computational Modeling [J]. Acta Materials, 1999, 47(7): 2089-2108.
[23]
Wang L L. Foundation of Stress Wave [M]. Beijing: National Defence Industry Press, 1985: 1-2. . (in Chinese)
[24]
王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985: 1-2.
[25]
Grady D E. Shock-Wave Compression of Brittle Solids [J]. Mechanics of Materials, 1998, 29: 181-203.
[26]
Tang W H, Zhang R Q, Hu J B, et al. Approximation Calculation Methods of Shock Temperature [J]. Advances in Mechanics, 1998, 28(4): 479-487. (in Chinese)
Kim B C, Lee J H, Kim J J, et al. Densification of Nanocrystalline ITO Powders in Fast Firing: Effect of Specimen Mass and Sintering Atmosphere [J]. Materials Reserch Bulletin, 2005, 40: 395-404.
[29]
Xu Z L. Elastic Mechanics(3rd ed) [M]. Beijing: Higher Education Press, 1990: 283-309. (in Chinese)