全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高温高压下液态水声速的研究——不同状态方程的准确性验证

DOI: 10.11858/gywlxb.2008.03.010, PP. 281-285

Keywords: 布里渊散射,高温高压,声速,状态方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究水的热力学状态方程,对于理解地球及行星科学等起着重要作用,但由于高温高压区域的实验数据较少,该区域的状态方程主要依赖于由低压部分外延或分子动力学模拟计算得到。采用布里渊散射技术测量熔解曲线附近液态水的声速,低温区采用电加热系统,高温区采用激光加热布里渊散射系统,分析比较了由实验测量得到的声速值与用经验状态方程计算的结果之间的差别。结果表明,在温度不超过673K、压力不超过6.0GPa的范围内,Abramson方程的计算结果与实验测量结果在误差范围内一致,而Saul和IAPWS-95的预言值比实验测量值偏高,并且温度越高偏差越大。在压力为21GPa、温度为890~1100K时,实验测量出的水的声速比状态方程预言的结果偏高。

References

[1]  Mishima O, Stanley H E. The Relationship between Liquid, Supercooled and Glassy Water [J]. Nature(London), 1998, 396: 329-335.
[2]  Cavazzoni C, Chiarotti G L, Scandolo S. Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions [J]. Science, 1999, 283: 44-46.
[3]  Belonoshko A, Saxena S K. A Molecular Dynamics Study of the Pressure-Volume Temperature Properties of Super-Critical Fluids: Ⅰ. H2O [J]. Geochim Cosmochim Acta, 1991, 55: 381-387.
[4]  Brodholt J, Wood B. Simulations of the Structure and Thermodynamic Properties of Water at High Pressures and Temperatures [J]. J Geophys Res, 1993, 98: 519-536.
[5]  Saul A, Wagner W. A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa [J]. J Phys Chem Ref Data, 1989, 18: 1537-1564.
[6]  Wagner W, Pruss A. The IAPWS Formulation(1995) for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use [J]. J Phys Chem Ref Data, 2002, 31: 387-535.
[7]  Abramson E H, Brown J M. Equation of State of Water Based on Speeds of Sound Measured in the Diamond-Anvil Cell [J]. Geochim Cosmochim Acta, 2004, 68: 1827-1835.
[8]  Frank M R, Fei Y W, Hu J Z. Constraining the Equation of State of Fluid H2O to 80 GPa Using the Melting Curve, Bulk Modulus, and Thermal Expansivity of Ice Ⅶ [J]. Geochim Cosmochim Acta, 2004, 68: 2781-2790.
[9]  Mishima O, Endo S. Melting Curve of Ice Ⅶ [J]. J Chem Phys, 1978, 68: 4417-4418.
[10]  Pistorius C W F T, Pistorius M C, Blakey J P, et al. Melting Curve of Ice Ⅶ to 200 kbar [J]. J Chem Phys, 1963, 38: 600-602.
[11]  Datchi F, Loubeyre P, LeToullec R. Extended and Accurate Determination of the Melting Curves of Argon, Helium, Ice(H2O), and Hydrogen(H2) [J]. Phys Rev B, 2000, 61: 6535-6546.
[12]  Lin J F, Militzer B, Struzhkin V V, et al. High Pressure-Temperature Raman Measurements of H2O Melting to 22 GPa and 900 K [J]. J Chem Phys, 2004, 121(17): 8423-8427.
[13]  Schwager B, Chudinovskikh L, Gavriliuk A, et al. Melting Curve of H2O to 90 GPa Measured in a Laser-Heated Diamond Cell [J]. J Phys: Condens Matter, 2004, 16: 1177-1179.
[14]  Li F F, Cui Q L, He Z, et al. High Pressure-Temperature Brillouin Study of Liquid Water: Evidence of the Structural Transition from Low-Density Water to High-Density Water [J]. J Chem Phys, 2005, 123: 174511(1)-174511(5).
[15]  Mao H K, Bell P M, Shaner J, et al. Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Rbuy R1 Fluorescence Pressure Gauge from 0. 06 to 1 Mbar [J]. J Appl Phys, 1978, 49: 3276-3283.
[16]  Ragan D D, Gustavsen R, Schiferl D. Calibration of the Ruby R1 and R2 Fluorescence Shift as a Function of Temperature from 0 to 600 K [J]. J Appl Phys, 1992, 72: 5539-5544.
[17]  Li F F, Cui Q L, He Z, et al. Brillouin Scattering Spectroscopy for a Laser Heated Diamond Anvil Cell [J]. Appl Phys Lett, 2006, 88: 203507(1)-203507(3).
[18]  Polian A. Brillouin Scattering at High Pressure: An Overview [J]. J Raman Spectrosc, 2003, 34: 633-637.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133