全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rayleigh-Taylor不稳定性的Runge-Kutta间断有限元模拟

DOI: 10.11858/gywlxb.2008.03.008, PP. 269-274

Keywords: Rayleigh-Taylor不稳定性,间断有限元,Level-Set方法,虚拟流体方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用发展后的间断有限元方法,对Rayleigh-Taylor不稳定性进行了数值模拟。在计算中采用Level-Set方法进行界面追踪,用虚拟流体方法(GhostFluidMethod,GFM)对界面附近物理量进行等压装配。对两个典型的Rayleigh-Taylor不稳定性算例的数值研究结果表明,采用该方法计算含有接触间断的多介质流体力学问题是有效的,在交界面附近不出现伪振荡,具有较高的分辨率。

References

[1]  Taylor G. The Stability of Liquid Surface when Accelerated in a Direction Perpendicular to Their Planes Ⅰ [J]. Proceedings of Royal Society of London, 1950, A201: 192-196.
[2]  Wang L L, Li J C. Fluid Mixing Due to Rayleigh-Taylor Instability in a Time-Dependent Acceleration Field [J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10: 571-577.
[3]  Andrews M J, Spalding D B. A Simple Experiment to Investigate Two-Dimensional Mixing by Rayleigh-Taylor Instability [J]. Phys Fluids, 1990, A2: 922-927.
[4]  Bai J S, Chen S H. Re-Initialized Level Set Method for Capturing 2D Compressible Multi-Fluid Interfaces [J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 22-28. (in Chinese)
[5]  柏劲松, 陈森华. 重新初始化的LS方法跟踪二维可压缩多介质流界面运动 [J]. 高压物理学报, 2003, 17(1): 22-28.
[6]  Cockburn B, Shu C W. The Runge-Kutta Local Projection P1-Discontinuous Galerkin Method for Scalar Conservation Law [J]. M2AN, 1991, 337: 337-361.
[7]  Cockburn B, Shu C W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws Ⅱ: General Framework [J]. Math Comp, 1989, 52: 411-435.
[8]  Cockburn B, Lin S Y. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws Ⅲ: One-Dimensional Systems [J]. J Comput Phys, 1989, 84: 90-113.
[9]  Cockburn B, Hou S C, Shu C W. TVB Runge-Kutta Discontinuous Galerkin Method for Conservation Laws Ⅳ: The Multidimensional Case [J]. J Comput Phys, 1990, 54: 545-581.
[10]  Cockburn B, Shu C W. TVB Runge-Kutta Discontinuous Galerkin Method for Conservation Laws Ⅴ: Multidimensional Systems [J]. J Comput Phys, 1998, 144: 199-224.
[11]  Fedkiw R P, Aslam T, Merriman B, et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows(The Ghost Fluid Method) [J]. J Comput Phys, 1999, 152: 457-492.
[12]  Li H X, Deng C, Zhao J F, et al. Numerical Simulation of Interface Movement in Gas-Liquid Two-Phase Flows with Level Set Method [J]. Nuclear Power Engineering, 2005, 26(3): 242-248. (in Chinese)
[13]  李会雄, 邓 晟, 赵建福, 等. Level Set输运方程的求解方法及其对气-液两相流运动界面数值模拟的影响 [J]. 核动力工程, 2005, 26(3): 242-248.
[14]  Yang Y Y, Li M J, Shu S, et al. High Order Schemes Based on Upwind Schemes with Modified Coefficients [J]. Journal of Computational and Applied Mathematics, 2006, 195: 242-251.
[15]  Shi J. Some Issues in High Order Numerical Schemes for Nonlinear Hyperbolic Conservation Laws [D]. Rhode Island, United States: Brown University, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133