全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

组合式隔热陶瓷短杆高温SHPB实验技术

DOI: 10.11858/gywlxb.2010.01.007, PP. 37-42

Keywords: 陶瓷短杆,高温,分离式霍普金森压杆(SHPB),抗氢钢

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论和分析了当前高温分离式霍普金森压杆(SHPB)实验技术,为了获得材料在高温下可靠的动态力学性能,建立了一套在压杆和试件之间添加隔热陶瓷短杆的高温SHPB实验系统。相比于传统接触式高温SHPB方案,该系统可以使用在更高的冲击载荷和温度下,与机械对杆方案相比,实验装置及其控制要简便许多。结合有限元模拟,对陶瓷短杆及温度场对压杆中应力波传播的影响进行了相应的评估,并利用这套实验系统得到了800℃下HR2抗氢钢的动态压缩应力-应变曲线。

References

[1]  Zukas J A, Nicholas T, Swift H F, et al. Impact Dynamics [M]. Malabar, Florida: Krieger Publishing Company, 1992.
[2]  Meyers M A. Dynamic Behavior of Materials [M]. New York: John Wiley & Sons, 1994.
[3]  Chiddister J, Malvern L E. Compression-Impact Testing of Aluminum at Elevated Temperatures [J]. Exp Mech, 1963, (3): 81-90.
[4]  Xia K W, Cheng J Y, Hu S S. Application of SHPB Apparatus to the Measurement of High Temperature Dynamic Mechanical Behavior of Materials [J]. Journal of Experimental Mechanics, 1998, 13(3): 307-313. (in Chinese)
[5]  夏开文, 程经毅, 胡时胜. SHPB装置应用于测量高温动态力学性能的研究 [J]. 实验力学, 1998, 13(3): 307-313.
[6]  Xia K W, Liu W Y, Tang Z P. Experimental Study of Dynamic Properties of 30CrMnSiA Steel at High Temperature [J]. Explosion and Shock Waves, 1998, 18(4): 310-316. (in Chinese)
[7]  夏开文, 刘文彦, 唐志平. 30CrMnSiA的高温动态力学性质的实验研究 [J]. 爆炸与冲击, 1998, 18(4): 310-316.
[8]  Zhang F J, Xie R Z. Auto-Assembling Technique Used in High Temperature Experiment of SHPB [J]. Journal of Experimental Mechanics, 2005, 20(2): 281-284. (in Chinese)
[9]  张方举, 谢若泽. SHPB系统高温实验自动组装技术 [J]. 实验力学, 2005, 20(2): 281-284.
[10]  Xie R Z, Zhang F J, Yan Y X, et al. High Temperature SHPB Experimental Technique and Its Application [J]. Explosion and Shock Waves, 2005, 25(4): 330-334. (in Chinese)
[11]  谢若泽, 张方举, 颜怡霞, 等. 高温SHPB实验技术及其应用 [J]. 爆炸与冲击, 2005, 25(4): 330-334.
[12]  Nemat-Nasser S, Isaacs J B. Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and Ta-W Alloys [J]. Acta Mater, 1997, 45(3): 907-919.
[13]  Li Y L, Suo T, Guo W G, et al. Determination of Dynamic Behavior of Materials at Elevated Temperatures and High Strain Rates Using Hopkinson Bar [J]. Explosion and Shock Waves, 2005, 25(6): 487-492. (in Chinese)
[14]  李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487-492.
[15]  Lankford J. Temperature Strain Rate Dependence of Compressive Strength and Damage Mechanisims in Aluminium Oxide [J]. J Mater Sci, 1981, 16(6): 1567-1578.
[16]  Bass J D, Svendsen B, Ahrens T J. The Temperatures of Shock Compressed Iron [A]//Manghnani M H, Syono Y. High Pressure Research in Mineral Physics [C]. Washingtong D C: Geophys Union, 1987: 393-402.
[17]  Wachtman J B, Lam D G. Young's Modulus of Various Refractory Materials as a Function Temperature [J]. J Amer Ceram Soc, 1959, 42: 254-260.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133