Liu W, Liu J H, Xie M Y, et al. Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai) [J]. J Agric Food Chem, 2009, 57(12): 5376-5380.
[2]
Paquin P. Technological properties of high pressure homogenizers: The effect of fat globules, milk proteins, and polysaccharides [J]. Int Dairy J, 1999, 9(3-6): 329-335.
[3]
Laneuville S I, Paquin P, Turgeon S L. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes [J]. Food Hydrocolloid, 2000, 14(4): 305-314.
[4]
Yuan Y, Gao Y, Zhao J, et al. Characterization and stability evaluation of beta-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions [J]. Food Res Int, 2008, 41(1): 61-68.
[5]
Liu W, Liu J H, Liu C M, et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment [J]. Innovat Food Sci Emerg Tech, 2009, 10(2): 142-147.
[6]
Liu W, Zhang Z Q, Liu C M, et al. The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin [J]. Food Chem, 2010, 123(3): 616-621.
[7]
Clemencia C L, Rosalba L, Annalisa S, et al. Effect of high pressure homogenization applied individually or in combination with other mild physical or chemical stresses on Bacillus cereus and Bacillus subtilis spore viability [J]. Food Control, 2009, 20(8): 691-695.
[8]
Liu W, Liu W L, Liu C M, et al. Preparation of medium-chain fatty acids (MCFA) nano-liposome by means of high pressure microfluidization (HPM) [J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 293-299. (in Chinese)
Mohr K H. High-pressure homogenization. Part Ⅰ. Liquid-liquid dispersion in turbulence fields of high energy density [J]. J Food Eng, 1987, 6(3): 177-186.
[11]
Soon S Y, Harbridge J, Titchener-Hooker N J, et al. Prediction of drop breakage in an ultra high velocity jet homogenizer [J]. J Chem Eng Jpn, 2001, 34(5): 640-646.
[12]
Hkansson A, Trgrdh C, Bergensthl B. Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model [J]. Food Hydrocolloids, 2009, 23(4): 1177-1183.
[13]
Feijoo S C, Hayes W W, Watson C E, et al. Effects of microfluidizer technology on Bacillus licheniformis spores in ice cream mix [J]. J Dairy Sci, 1997, 80(9): 2184-2187.
[14]
Liu W, Liu C M, Ruan R S, et al. Analysis of heat conversion of pressure and energy in the high hydrostatic pressure processing [J]. Food Science, 2003, 24(7): 162-164. (in Chinese)
Liu C M, Liu W, Gao Y Y, et al. Analysis on fluid dynamic behavior in high velocity jet homogenizer [J]. Food Science, 2004, 25(4): 58-62. (in Chinese)
Zhou Z G, Ma D Y. Numerical simulation of high-pressure jet nozzle based on fluent [J]. Machine Building and Automation, 2010, 39(1): 61-62. (in Chinese)
Zhao Y. Refined lanczos type methods for computing a partial singular value decomposition of a large matrix [D]. Dalian: Dalian University of Technology, 2004. (in Chinese)