全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于特征长度的非球形弹丸超高速撞击碎片云特性研究

DOI: 10.11858/gywlxb.2012.01.002, PP. 7-17

Keywords: 空间碎片,超高速撞击,碎片云,弹丸形状效应,数值仿真

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据ORDEM2000模型和卫星标准解体模型(SBM),确定空间中真实空间碎片的典型形状和撞击姿态。利用AUTODYN仿真软件,基于碎片特征长度,对立方体、方形薄片超高速撞击产生的碎片云进行三维数值模拟,从形状、质量分布、速度分布与能量分布深入分析碎片云特性,并与通用的球形标准弹丸进行比对。结果表明:弹丸形状及撞击姿态对碎片云特性有显著影响,立方体和方形薄片弹丸角撞击时产生的毁伤能力最大,而球形弹丸最小。因此,基于标准球形弹丸获得的弹道极限方程低估了航天器遭受空间碎片撞击损伤的风险,而基于真实碎片特征长度的弹丸形状效应研究将对现行的球形弹丸弹道极限方程(或曲线)做出更合理的修正。

References

[1]  Morrison R H. A preliminary investigation of projectile shape effects in hypervelocity impact of a double-sheet structure, NASA TN D-6944 [R]. Washington D C: National Aeronautics and Space Administration, 1972.
[2]  Christiansen E L, Justin H K. Projectile shape effects on shielding performance at 7 km/s and 11 km/s [J]. Int J Impact Eng, 1997, 20(1-5): 165-172.
[3]  Hu K, Schonberg W P. Ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems [J]. Int J Impact Eng, 2003, 29(1-10): 345-355.
[4]  Thornhill T F, Chhabildas L C, Reinhart W D, et al. Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques [J]. Int J Impact Eng, 2006, 33(1): 799-811.
[5]  Protection manual, IADC-WD-00-03 [R]. Inter-Agency Space Debris Coordination Committee, 2008.
[6]  Zhang W, Pang B J, Luo D K, et al. Investigation into material state characterization of debris cloud created by cylindrical projectile impact on bumper [J]. Chinese Space Science and Technology, 2001, 3: 53-59. (in Chinese)
[7]  张伟, 庞宝君, 罗德坤, 等. 柱状弹丸撞击防护屏形成碎片云材料状态特性研究 [J]. 中国空间科学技术, 2001, 3: 53-59.
[8]  Ma W L, Zhang W, Guan G S, et al. Numerical simulation of debris cloud produced by ellipsoidal projectile hypervelocity impact on bumper [J]. Materials Science & Technology, 2005, 13(3): 294-298. (in Chinese)
[9]  马文来, 张伟, 管公顺, 等. 椭球弹丸超高速撞击防护屏碎片云数值模拟 [J]. 材料科学与工艺, 2005, 13(3): 294-298.
[10]  Zhang W, Ma W L, Guan G S, et al. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration [J]. Explosion and Shock Waves, 2007, 27(3): 240-245. (in Chinese)
[11]  张伟, 马文来, 管公顺, 等. 非球弹丸超高速撞击航天器防护结构数值模拟 [J]. 爆炸与冲击, 2007, 27(3): 240-245.
[12]  Xu J Z. Research on the characteristics of debris clouds produced by hypervelocity impacts of space debris and the design and optimization of the shielding structure using SPH method [D]. Changsha: National University of Defense Technology, 2008: 120-133. (in Chinese)
[13]  徐金中. 空间碎片超高速撞击特性及其防护结构优化设计的SPH研究 [D]. 长沙: 国防科学技术大学, 2008: 120-133.
[14]  Schonberg W P, Williamsen J E. RCS-based ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems [J]. Int J Impact Eng, 2006, 33(1-12): 763-770.
[15]  Williamsen J E, Evans S W. Predicting orbital debris shape and orientation effects on spacecraft shield ballistic limits based on characteristic length [J]. Int J Impact Eng, 2006, 33(1-12): 862-871.
[16]  Williamsen J E, Schonberg W P, Evans H, et al. A comparison of NASA, DoD, and hydrocode ballistic limit predictions for spherical and non-spherical shapes versus dual- and single-wall targets, and their effects on orbital debris penetration risk [J]. Int J Impact Eng, 2008, 35(12): 1870-1877.
[17]  Liou J C, Matney M J, Phillip D, et al. The new NASA orbital debris engineering model ORDEM2000, NASA/TP-2002-210780 [R]. USA: NASA Johnson Space Center, 2002.
[18]  Mcnight D S, Johnson N L, Fudge M L, et al. Satellite orbital debris characterization impact test (SOCIT) series data collection report, NAS 9-19215 [R]. Colorado Springs, CO, USA: Kaman Sciences Corporation, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133