全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界能量影响的实验研究

DOI: 10.11858/gywlxb.2012.01.008, PP. 55-62

Keywords: 直接起爆,临界起爆能量,诱导区长度,电火花点火,氩气

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用高压电点火进行直接起爆,通过放电过程中电流的输出信号确定起爆能量,实验测定了C2H2-2.5O2气体和加入摩尔浓度为70%氩气的C2H2-2.5O2混合气体直接起爆的临界起爆能量,研究了高浓度氩气稀释对C2H2-2.5O2混合物临界起爆能量的影响。实验测得的混合物临界起爆能量实验值与Lee等人的表面积能量理论值基本吻合。研究表明:C2H2-2.5O2气体和加入摩尔浓度为70%氩气的C2H2-2.5O2混合气体的临界起爆能量均依赖于初始压力,并呈反相关指数关系;在相同实验条件下,高浓度氩气稀释极大提高了混合气体直接起爆的临界起爆能量。分析认为,由于临界起爆能量正比于诱导区长度的3次方,因此在相同初始压力下,高浓度氩气的稀释增加了C2H2-2.5O2混合气体爆轰诱导区长度,并最终导致其临界起爆能量的显著上升。

References

[1]  Lee J H S. Initiation of gaseous detonation [J]. Annu Rev Phys Chem, 1977, 28: 75-104.
[2]  Lee J H S. Dynamic parameters of gaseous detonations [J]. Annu Rev Fluid Mech, 1984, 16: 311-336.
[3]  Zel'dovich Y B, Kogarko S M, Simonov N N. An experimental investigation of spherical detonation in gases [J]. Sov Phys Tech Phys, 1957, 1: 1689-1713.
[4]  Matsui H, Lee J H S. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixture [J]. Proc Combust Inst, 1978, 17: 1269.
[5]  Lee J H, Matsui H. A comparison of the critical energies for direct initiation of spherical detonations in acetylene-oxygen mixtures [J]. Combust flame, 1977, 28: 61-66.
[6]  Lee J H S, Higgins A J. Comments on criteria for direct initiation of detonation [J]. Phil Trans R Soc Lond A, 1999, 357: 3503-3521.
[7]  Benedick W B, Guirao C M, Knystautas R, et al. Critical charge for the direct initiation of detonation in gaseous fuel-air mixtures [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 1986, 106: 181-202.
[8]  Lee J H S, Guirao C M. Fuel-air explosions [M]. Waterloo, Ontario, Canada: University of Waterloo Press, 1982: 157.
[9]  Knystautas R, Lee J H S. On the effective energy for direct initiation of gaseous detonations [J]. Combust Flame, 1976, 27: 221-228.
[10]  Kamenskihs V, Ng H D, Lee J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures [J]. Combust Flame, 2010, 157(9): 1795-1799.
[11]  Zhang B, Kamenskihs V, Ng H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proc Combust Inst, 2011, 33(2): 2265-2271.
[12]  Desbordes D, Guerraud C, Hamada L, et al. Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 1993, 153: 347-359.
[13]  Knystautas R, Lee J H, Guirao C M. The critical tube diameter for detonation failure in hydrocarbon-air mixtures [J]. Combust flame, 1982, 48: 63-83.
[14]  Radulescu M I. The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes [D]. Montreal, Canada: McGill University, 2003.
[15]  Kaneshige M, Shepherd J E. Detonation database, FM97-8 [R]. Pasadena, USA: California Institute of Technology, 1997.
[16]  Kee R J, Rupley F M, Miller J A. Chemkin-Ⅱ: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, SAND89-8009 [R]. Washington DC, USA: Sandia National Laboratories, 1989.
[17]  Konnov A A. Detailed reaction mechanism for small hydrocarbons combustion: Project-in-progress on the world wide web [EB/OL]. http: //homepages. vub. ac. be/~akonnov/science/mechanism/15Bel_abs. html.
[18]  Shepherd J E. Detonation in gases [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 2009, 32: 83-98.
[19]  Carnasciali F, Lee J H S, Knystautas R, et al. Turbulent jet initiation of detonation [J]. Combust Flame, 1991, 84(1-2): 170-180.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133