全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压下金属间化合物CaAlSi的电子结构和晶格动力学性质

DOI: 10.11858/gywlxb.2014.02.005, PP. 161-167

Keywords: 高压,第一性原理,金属间化合物,电子拓扑结构相变

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用基于密度泛函理论的第一性原理方法,研究了三元金属间化合物CaAlSi在高压下的电子性质和晶格振动性质。三元金属间化合物CaAlSi具有和MgB2类似的六角蜂巢状结构,Ca原子取代了Mg原子的位置,Al、Si原子无序地占据B原子的位子。通过对Ca三元金属间化合物能带和三维费米面的计算,发现在压力的作用下CaAlSi费米面附近的能带发生了电子拓扑变化,压强可以导致电子拓扑结构相变(ETTs)。通过晶格动力学的研究发现,在压力的作用下,CaAlSi的光学支沿着A-L-H方向逐渐软化,声学支逐渐变硬。说明此金属间化合物在压力的作用下,其结构不是很稳定,随着压力的继续增大,可能会有新的结构出现。

References

[1]  Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410(6824): 63-64.
[2]  Flleischer R, Dimiduk D, Lipsitt H. Intermetallic compounds for strong high temperature materials: Status and potential [J]. Ann Rev Mater Sci, 1989, 19(1): 231-263.
[3]  Buschow K. Intermetallic compounds of rare-earth and 3d transition metals [J]. Reports on Progress in Physics, 1977, 40(10): 1179-1256.
[4]  Zhang Y G. Intermetallic Structural Materials [M]. Changsha: The National Defense Science and Technology Press, 2002. (in Chinese)
[5]  张永刚. 金属间化合物结构材料 [M]. 长沙: 国防科技出版社, 2002.
[6]  Shi C X. High technology of the new materials situation and expectation [J]. Mech Eng Mater, 1994, 18(1): 3-6. (in Chinese)
[7]  师昌绪. 高技术新材料的现状与展望 [J]. 机械工程材料, 1994, 18(1): 3-6.
[8]  Sanfilippo S, Elsinger M, Núez-Regueiro M, et al. Superconducting high pressure CaSi2 phase with Tc up to 14 K [J]. Phys Rev B, 2000, 61: R3800-R3803.
[9]  Imai M, Nishida K, Kimura T, et al. Superconductivity of Ca(Al0. 5, Si0. 5)2, a ternary silicide with the AlB2-type structure [J]. Appl Phys Lett, 2002, 80(6): 1019-1021.
[10]  Weller T E, Ellerby M, Saxena S S, et al. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca [J]. Nature Phys, 2005, 1(1): 39-41.
[11]  Zhang J Y, Zhang L J, Cui T, et al. Phonon and elastic instabilities in rocksalt alkali hydrides under pressure: First-principles study [J]. Phys Rev B, 2007, 75: 104115.
[12]  Xie Y, John S T, Cui T, et al. Electronic and phonon instabilities in face-centered-cubic alkali metals under pressure studied using ab initio calculations [J]. Phys Rev B, 2007, 75: 064102.
[13]  Zhang L J, Wang Y C, Zhang X X, et al. High-pressure phase transitions of solid HF, HCl, and HBr: An ab initio evolutionary study [J]. Phys Rev B, 2010, 82: 014108.
[14]  Ma Y M, Tse J S, Klug D D. First-principles study of the mechanisms for the pressure-induced phase transitions in zinc-blende CuBr and CuI [J]. Phys Rev B 2004, 69: 064102 .
[15]  Zhang L J, Xie Y, Cui T, et al. Pressure-induced enhancement of electron-phonon coupling in superconducting CaC6 from first principles [J]. Phys Rev B 2006, 74: 184519.
[16]  Li Y, Zhang L J, Cui T, et al. Phonon instabilities in rocksalt AgCl and AgBr under pressure studied within density functional theory [J]. Phys Rev B 2006, 74: 054102.
[17]  Yin M T, Cohen M L. Theory of static structural properties, crystal stability, and phase transformations: Application to Si and Ge [J]. Phys Rev B, 1982, 26: 5668-5687.
[18]  Kunc K, Martin R M. Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties [J]. Phys Rev Lett, 1982, 48(6): 406-409.
[19]  Frank W, Elssser C, Fhnle M. Ab initio force-constant method for phonon dispersions in alkali metals [J]. Phys Rev Lett, 1995, 74(10): 1791-1794.
[20]  Savrasov S Y. Linear-response theory and lattice dynamics: A muffin-tin-orbital approach [J]. Phys Rev B, 1996, 54(23): 16470-16486.
[21]  Giannozzi P, de Gironcoli S, Pavone P, et al. Ab initio calculation of phonon dispersions in semiconductors[J]. Phys Rev B, 1991, 43(9): 7231-7242.
[22]  Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys Rev, 1964, 136(3B): B864-B871.
[23]  Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids [J]. Phys Rev Lett, 1987, 58(18): 1861-1864.
[24]  Yang H S, Yu M, Li S Y, et al. The study of thermoelectric potential and resistivity on the new superconductor MgB2 [J]. Acta Physica Sinica, 2001, 50(6): 1197-1200. (in Chinese)
[25]  杨宏顺, 余旻, 李世燕, 等. 新型超导体MgB2的热电势和电阻率研究 [J]. 物理学报, 2001, 50(6): 1197-1200.
[26]  Imai M, Sato A, Aoyagi T, et al. Superconductivity in the AlB2-type ternary rare-earth silicide YbGa1. 1Si0. 9 [J]. J Am Chem Soc, 2008, 130(10): 2886-2887.
[27]  Li Z Q, Tse J S. Phonon anomaly in high-pressure Zn [J]. Phys Rev Lett, 2000, 85(24): 5130-5133.
[28]  Tamegai T, Uozato K, Kasahara S, et al. Comparative study of anisotropic superconductivity in CaAlSi and CaGaSi [J]. Physica C: Superconductivity, 2005, 426-431: 208-212.
[29]  Ma R, Huang G Q, Liu M. Structure and supeiconductivity of three ternary silicide CaAlSi [J]. Acta Physica Sinica, 2007, 56(8): 4960-4964. (in Chinese)
[30]  马荣, 黄桂琴, 刘楣. 三元硅化物CaAlSi的结构和超导电性 [J]. 物理学报, 2007, 56(8): 4960-4964.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133