全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高静压物理变性处理糯玉米淀粉的糊化及重结晶机理研究

DOI: 10.11858/gywlxb.2014.02.018, PP. 247-256

Keywords: 高静压,物理变性,淀粉,糊化,重结晶

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用高静压技术(HHP)作为物理变性方法处理糯玉米淀粉,考察高静压力对糯玉米淀粉糊化及重结晶的影响。采用偏光显微镜及扫描电子显微镜观测处理后的淀粉颗粒的形态变化,激光粒度分析仪用于记录淀粉颗粒的粒度分布及变化规律;利用红外光谱技术分析可能发生的微观二级结构变化,结合X射线衍射曲线及DSC差热分析曲线,验证淀粉颗粒内部结构的变化。结果表明:300MPa的高静压对淀粉具有压缩作用,使其粒度减小,结晶度提高,起始糊化温度、糊化焓值增加;450MPa高静压处理后,淀粉的结晶结构几乎完全被破坏,糊化度达到95%,膨胀度为57.07%,并以此验证了HHP处理会导致淀粉颗粒发生有限膨胀;600MPa高静压处理后,淀粉颗粒发生重结晶现象,表现为典型的多峰、宽峰DSC曲线,结晶度增加。综合本研究及其他研究成果,提出“3个发展阶段”的HHP对糯玉米淀粉颗粒微观结构变化的新机制,包括:颗粒被压缩、内部结晶结构解体及颗粒解体并重新排序阶段。

References

[1]  Farr D. High pressure technology in the food industry [J]. Trends Food Sci Tech, 1990, 1: 14-17.
[2]  Mertens B, Knorr D. Development of nonthermal processes for food preservation [J]. Food Technol, 1992, 46(5): 124-133.
[3]  Farkas D F, Hoover D G. High pressure processing: kinetics of microbial inactivation for alternative food processing technologies [J]. J Food Sci, 2000(Suppl): 47-64.
[4]  Meyer R S, Cooper K L, Knorr D, et al. High-pressure sterilization of foods [J]. Food Technol, 2000, 54(11): 67-72.
[5]  Butz P, Tauscher B. Emerging technologies: Chemical aspects [J]. Food Res Int, 2002, 35(2): 279-284.
[6]  Liu P L, Zhang F S, Bai Y F, et al. Effect of high hydrostatic pressure on starch structure and gelatinization [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 472-480.
[7]  刘培玲, 张甫生, 白云飞, 等. 高静压对淀粉结构及糊化性质的影响 [J]. 高压物理学报. 2010, 24(6): 472-480.
[8]  Stute R, Klingler R W, Boguslawski S, et al. Effects of high pressures treatment on starches [J]. Starch-Starke, 1996, 48(11/12): 399-408.
[9]  Stolt M, Oinonen S, Autio K. Effect of high pressure on the physical properties of barley starch [J]. Innovat Food Sci Emerg Tech, 2001, 1(3): 167-175.
[10]  Liu Y, Selomulyo V O, Zhou W. Effect of high pressure on some physicochemical properties of several native starches [J]. J Food Eng, 2008, 88(1): 126-136.
[11]  Rubens P, Heremans K. Pressure-temperature gelatinisation phase diagram of starch: An in situ fourier transform infrared study [J]. Biopolymers, 2000, 54(7): 524-530.
[12]  Douzals J, Marechal P, Coquille J, et al. Microscopic study of starch gelatinization under high hydrostatic pressure [J]. J Agric Food Chem, 1996, 44(6): 1403-1408.
[13]  Kudla E, Tomasik P. The modification of starch by high pressure. Part Ⅱ: Compression of starch with additives [J]. Starch-Starke, 1992, 44(7): 253-259.
[14]  Onwulata C, Elchediak E. Starches and fibers treated by dynamic pulsed pressure [J]. Food Res Int, 2000, 33(5): 367-374.
[15]  Lu D L, Wang D C, Jing L Q, et al. Starch gelatinization and retrogradation properties under different basic fertilizer regimes and nitrogen topdressing at jointing stage of waxy maize [J]. Acta Agronomica Sinica, 2009, 35(5): 867-874. (in Chinese)
[16]  陆大雷, 王德成, 景立权, 等. 基肥配比和拔节期追施氮肥对糯玉米淀粉胶凝和回生特性的影响 [J]. 作物学报, 2009, 35(5): 867-874.
[17]  Sandhu K S, Singh N. Some properties of corn starches Ⅱ: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties [J]. Food Chem, 2007, 101(4): 1499-1507.
[18]  Imberty A, Buléon A, Tran V, et al. Recent advances in knowledge of starch structure [J]. Starch-Starke, 1991, 43(10): 375-384.
[19]  Singh N, Chawla D, Singh J. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch [J]. Food Chem, 2004, 86(4): 601-608.
[20]  Stolt M, Stoforos N G, Taoukis P S, et al. Evaluation and modeling of rheological properties of high pressure waxy maize starch dispersion [J]. J Food Eng, 1999, 40(4): 293-298.
[21]  Blaszczak W, Valverde S, Fornal J. Effect of high pressure on the structure of potato starch [J]. Carbohyd Polym, 2005, 59(3): 377-383.
[22]  Capron I, Robert P, Colonna P, et al. Starch in rubbery and glassy states by FTIR spectroscopy [J]. Carbohydrate Polymers, 2007, 68(2): 249-259.
[23]  van Soest J J G, de Wit D, Tournois H, et al, Retrogradation of potato starch as studied by Fourier transform infrared spectroscopy [J]. Starch-Starke, 1994, 46(12): 453-457.
[24]  Cael J J, Koenig J L, Blackwell J. Infrared and Raman Spectroscopy of carbohydrates. Part Ⅵ: Normal coordinate analysis of V-amylose [J]. Biopolymers, 1975, 14(9): 1885-1903.
[25]  Sevenou O, Hill S E, Farhat I A, et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy [J]. Int J Bio Macromol, 2002, 31(1): 79-85.
[26]  Capron I, Robert P, Colonna P, et al. Starch in rubbery and glassy states by FTIR spectroscopy [J]. Carbohyd Polym, 2007, 68(2): 249-259.
[27]  Tester R F, Debon S J J. Annealing of starch-A review [J]. Int J Bio Macromol, 2000, 27(1): 1-12.
[28]  Jayakody L, Hoover R. The effect of lintnerization on cereal starch granules [J]. Food Res Int, 2002, 35(7): 665-680.
[29]  Kawai K, Fukami K, Yamamoto K, et al. Effects of treatment pressure, holding time, and starch content on gelatinisation and retrogradation properties of potato starch-water mixtures treated with high hydrostatic pressure [J]. Carbohyd Polym, 2007, 69(3): 590-596.
[30]  Seow C C, Thevamalar K. Internal plasticization of granular rice starch by hydroxypropylation: Effects on phase transitions associated with gelatinization [J]. Starch-Starke, 1993, 45(3): 85-88.
[31]  Miles M J, Morris V J, Orford P D, et al. The roles of amylase and amylopectin in the gelation and retrogradation of starch. Carbohyd Polym, 1985, 135(2): 271-281.
[32]  Orford P D, Ring S G, Carroll V, et al. The effect of concentration and botanical source on the gelation and retrogradation of starch [J]. J Sci Food Agr, 1987, 39(2): 169-177.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133