Sternberg J. Material properties determining the resistance of ceramics to high velocity penetration [J]. J Appl Phys, 1989, 65(9): 3417-3424.
[2]
Forrestal M J, Longcope D B. Target strength of ceramic materials for high-velocity penetration [J]. J Appl Phys, 1990, 67(8): 3669-3672.
[3]
Wright S C, Huang Y, Fleck N A. Deep penetration of polycarbonate by a cylindrical punch [J]. Mech Mater, 1992, 13(4): 277-284.
[4]
Partom Y. Ceramic armor resistance to long-rod penetration (Rt) and its dependence on projectile velocity [D]. Austin: University of Texas, 1993.
[5]
Bless S, Satapathy S, Simha H. Response of alumina ceramic to impact and penetration [C]//The Proceedings of the 1996 4th International Conference on Structures under Shock and Impact. Udine, Italy: Computational Mechanics Inc, 1996.
[6]
Bishop R F, Hill R, Mott N F. The theory of indentation and hardness tests [J]. Proc Phys Soc, 1945, 57(3): 147-159.
[7]
Hill R. The Mathematical Theory of Plasticity [M]. London: Oxford University Press, 1950.
[8]
Chadwick P. The quasi-static expansion of a spherical cavity in metals and ideal soil [J]. Quart J Mech Appl Math, 1959, 12(1): 52-71.
[9]
Guo T T, Ren H L, Ning J G. Theoretical model and numerical simulation of ceramic target against shaped charge jet penetration [J]. Mater Res Innovat, 2011, 15(S1): 140-142.
[10]
Li P. Dynamic response and the mechanism of ceramic against long rod penetration [D]. Beijing: Beijing Institute of Technology, 2002. (in Chinese)
[11]
李平. 陶瓷材料的动态力学响应及其抗长杆弹侵彻机理 [D]. 北京: 北京理工大学, 2002.
[12]
Marsh S P. LASL Shock Hugoniot Data [M]. Berkeley, CA: University of California Press, 1980.