全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碎片云超高速撞击声发射信号特征分析

DOI: 10.11858/gywlxb.2014.06.004, PP. 664-670

Keywords: 二次碎片云,超高速撞击,声发射,小波包能量熵

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了掌握带防护屏的航天器结构受空间碎片超高速撞击时的声发射信号特征,利用二级轻气炮发射球形弹丸撞击铝合金双层板结构,获取了碎片云撞击铝合金板舱壁产生的声发射信号,并利用小波包技术和能量熵理论对信号进行了分析。实验结果表明:弹丸初始速度、防护屏厚度及弹丸直径是决定二次碎片云形态及声发射信号特征的重要因素;在本实验工况范围内,小波包能量熵值能够描述声发射信号频率的复杂程度;当弹丸初始速度处于破碎段(3~7km/s)时,随着初始速度的增大,二次碎片云进一步细化,撞击产生的声发射信号幅值趋于减小、频率成分趋于复杂化,其小波包能量熵值逐渐增大;防护屏厚度对声发射信号的小波包能量熵值影响较大,弹丸直径对其影响较小。研究结果有助于实现对碎片云撞击舱壁结构的损伤模式识别。

References

[1]  Schafer F, Janovsky R. Impact sensor network for detection of hypervelocity impacts on spacecraft [J]. Acta Astronaut, 2007, 61(10): 901-911.
[2]  Prosser W H, Gorman M R, Humes D H. Acoustic emission signals in thin plates produced by impact damage [J]. J Acoust Emiss, 1999, 17(1/2): 29-36.
[3]  Tang Q, Pang B J, Han Z Y, et al. Analysis of frequency spectrum character of acoustic emission wave from hypervelocity impact on single-sheet plate [J]. Journal of Astronautics, 2007, 28(4): 1059-1064. (in Chinese)
[4]  唐颀, 庞宝君, 韩增尧, 等. 单层板超高速撞击声发射波的频谱特征分析 [J]. 宇航学报, 2007, 28(4): 1059-1064.
[5]  Liu W G, Pang B J, Han Z Y, et al. Damage identification of single aluminum plate produced by hypervelocity impact based acoustic emission [J]. Journal of Astronautics, 2011, 32(3): 671-675. (in Chinese)
[6]  Miyachi T, Hasebe N, Ito H, et al. Real-time detector for hypervelocity microparticles using piezoelectric material [J]. Adv Space Res, 2004, 34(5): 935-938.
[7]  刘武刚, 庞宝君, 韩增尧, 等. 基于声发射的单层铝板高速撞击损伤类型识别 [J]. 宇航学报, 2011, 32(3): 671-675.
[8]  Guan Y H, Hu B Y, Huang C. Vibration analysis of an explosion vessel based on wavelet packet transform [J]. Explosion and Shock Waves, 2010, 30(5): 551-555. (in Chinese)
[9]  管永红, 胡八一, 黄超. 基于小波包的爆炸容器振动分析 [J]. 爆炸与冲击, 2010, 30(5): 551-555.
[10]  Ling T H, Liao Y C, Zhang S. Application of wavelet packet method in frequency band energy distribution of rock acoustic emission signals under impact loading [J]. Journal of Vibration and Shock, 2010, 29(10): 127-130,255. (in Chinese)
[11]  凌同华, 廖艳程, 张胜. 冲击荷载下岩石声发射信号能量特征的小波包分析 [J]. 振动与冲击, 2010, 29(10): 127-130,255.
[12]  Guan G G, Pang B J, Ha Y,et al. Experimental investigation of high-velocity impact on aluminum alloy Whipple shield [J]. Explosion and Shock Waves, 2005, 25(5): 461-466. (in Chinese)
[13]  管公顺, 庞宝君, 哈跃, 等. 铝合金Whipple防护结构高速撞击实验研究 [J]. 爆炸与冲击, 2005, 25(5): 461-466.
[14]  Christiansen E L. Design and performance equations for advanced meteoroid and debris shields [J]. Int J Impact Eng, 1993, 14(1): 145-156.
[15]  Tang Q. Characteristics of plate waves induced by hypervelocity impact and onboard monitoring technique for detection of impact on spacecraft by space debris [D]. Harbin: Harbin Institute of Technology, 2008: 56-76. (in Chinese)
[16]  唐颀. 超高速撞击板波特性与声发射空间碎片在轨感知技术 [D]. 哈尔滨:哈尔滨工业大学, 2008: 56-76.
[17]  印欣运, 何永勇, 彭志科, 等. 小波熵及其在状态趋势分析中的应用 [J]. 振动工程学报, 2004, 17(2): 49-53.
[18]  Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals [J]. J Neurosci Meth, 2001, 105(1): 65-75.
[19]  Yin X Y, He Y Y, Peng Z K, et al. Study on wavelet entropy and its applications in trend analysis [J]. Journal of Vibration Engineering, 2004, 17(2): 49-53. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133