全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非饱和黏土平板撞击实验及状态方程的研究

DOI: 10.11858/gywlxb.2014.06.002, PP. 648-654

Keywords: 非饱和黏土,含水率,二级轻气炮,平板撞击实验,状态方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用口径为24mm的二级轻气炮实验装置,结合磁测速和光纤探针动态测试技术,分别对含水率为0、8%和15%的3种非饱和黏土试样进行了平板撞击实验,试样的压力峰值区间为1.29~32.54GPa。实验结果表明,含水率对非饱和黏土的冲击压缩特性影响明显。当非饱和黏土受到冲击压缩时,孔隙被进一步压实,滞留在黏土孔隙中的水和空气来不及排出,从而与黏土中的固体颗粒一起,共同支配非饱和黏土的冲击压缩特性;而由于水的相对不可压缩性,导致黏土的可压缩性随着含水率的升高而下降。提出一种修正的三相混合物状态方程,对3种含水率试样的压力-密度曲线进行了拟合,结果表明,该状态方程能够较好地描述不同含水率非饱和黏土的压力-密度关系。

References

[1]  Tsembelis K, Proud W G, Vaughan B A M. The behavior of sand under shock wave loading: Experiments and simulations [C]//Benitez F G. Proceedings of the 14th DYMAT Technical Meeting on Behavior of Materials at High Strain Rates: Numerical Modeling. Sevilla, 2002: 193-203.
[2]  Resnyansky A D, Bourne N K. Shock compression of dry and hydrated sand [C]//Furnish M D. Shock Compression of Condensed Matter-2003. New York: American Institute of Physics, 2004: 1474-1477.
[3]  Chapman D J, Tsembelis K, Proud W G. The behaviour of dry sand under shock-loading [C]//Furnish M D. Shock Compression of Condensed Matter-2005. New York: American Institute of Physics, 2006: 1445-1448.
[4]  Henrych J. The Dynamics of Explosion and Its Application [M]. Translated by Xiong J G. Beijing: Science Press, 1987: 161-170. (in Chinese)
[5]  Henrych J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 161-170.
[6]  Chapman D J, Tsembelis K, Proud W G. The behavior of water saturated sand under shock-loading [C]//O’Brien E. Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics. Saint Louis: The Society for Experimental Mechanics, 2006: 834-840.
[7]  Chapman D J, Braithwaite C H, Proud W G. Shock-loading of statically compacted soil [C]//Elert M, Furnish M D, Cliau R, et al. Shock Compression of Condensed Matter-2007. New York: American Institute of Physics, 2007: 1367-1370.
[8]  Brown J L, Vogler T J, Chhabildaz L C, et al. Shock response of dry sand, SAND2007-3524 [R]. USA: Sandia National Laboratories, 2007.
[9]  Bragov A M, Lomunov A K, Sergeichev I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. Int J Impact Eng, 2008, 35(9): 967-976.
[10]  Arlery M, Gardou M, Fleureau J, et al. Dynamic behaviour of dry and water-saturated sand under planar shock conditions [J]. Int J Impact Eng, 2010, 37(1): 1-10.
[11]  Wang Z, Lu Y. Numerical analysis on dynamic deformation mechanism of soils under blast loading [J]. Soil Dyn Earthq Eng, 2003, 23(8): 705-714.[12] Wang Z, Hao H, Lu Y. A three-phase soil model for simulating stress wave propagation due to blast loading [J]. Int J Numer Anal Met, 2004, 28(1): 33-56.
[12]  Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State [M]. 2nd ed. Beijing: Higher Education Press, 2008: 293-295. (in Chinese)
[13]  汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 第2版. 北京: 高等教育出版社, 2008: 293-295.
[14]  Wang R B, Tian J H, He L H, et al. Application of fiber-optic pin to nonmetallic shock experiments [J]. Explosion and Shock Waves, 2006, 26(3): 284-287. (in Chinese)
[15]  Qian Q H, Wang M Y. Impact and Explosion Effects in Rock and Soil [M]. Beijing: National Defence Industry Press, 2010: 205-213. (in Chinese)
[16]  钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010: 205-213.
[17]  王荣波, 田建华, 何莉华, 等. 石英光纤探针在非金属材料冲击实验中的应用 [J]. 爆炸与冲击, 2006, 26(3): 284-287.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133