Curran D R, Seaman L, Shockey D A. Dynamic Failure of Solid [J]. Phys Rep Rev Sec Phys Lett, 1987, 147(5-6): 253-388.
[2]
Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain-Rates and High Temperatures [A]//Proc 7th Int Nat Symposium on Ballistics [C]. The Hague, The Netherlands, 1983: 541.
[3]
Zerilli F J, Armstrong R W. Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations [J]. J Appl Phys, 1987, 61: 1816.
[4]
Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate [J]. J Appl Phys, 1980, 51: 1498-1533.
[5]
Bernstein D, Godfrey C, Klein A, et al. Research on Manganin Pressure Transducers Behavior of Dense Media under High Dynamic Pressure [M]. New York: Gordan and Breach, 1968: 461-467.
[6]
Dremin A N, Kanel G I. Compression and Rarefaction Waves in Shock-Compressed Metals [J]. J Appl Mech Tech Phys, 1976, 17: 263-267.
[7]
Kanel G I, Molodets A M, Dremin A N. Investigation of Singularities of Glass Strain under Compression Waves [J]. Comb Expl Shock Waves, 1977, 13: 772-779.
[8]
Chartagnac P F. Determination of Mean and Deviatoric Stresses in Shock Loaded Solids [J]. J Appl Phys, 1982, 53: 948-953.
[9]
Gupta T M. Stress Measurements Using Piezoresistive Gauge: Modelling the Gauge as an Elastic-Plastic Inclusion [J]. J Appl Phys, 1983, 54: 6256-6266.
[10]
Rosenberg Z, Partom Y. Lateral Stress Measurement in Shock-Loaded Targets with Transverse Piezoresistive Gauges [J]. J Appl Phys, 1985, 58: 3072-3076.
[11]
Millett J C F, Bourne N K, Rosenberg Z. On the Analysis of Transverse Stress Gauge Data from Shock Loading Experiments [J]. J Appl, D: Appl Phys, 1996, 29: 2466-2472.
[12]
Greenwood D, Forbes J, Garcia F, et al. Improvements in the Signal Fidelity of the Manganin Stress Gauge [A]//Furnish M D, Thadhani N N, Norie Y. Shock Compression of Condensed Matter-2001 [C]. New York: Melville, 2002: 1157-1159.
[13]
Millett J C F, Bourne N K, Rosenberg Z, et al. Shear Strength Measurements in a Tungsten Alloy during Shock Loading [J]. J Apply Phys, 1999, 86: 6707-6709.
[14]
Millett J C F, Bourne N K, Graylll G T, et al. The Response of TiAl Based Alloys to One Dimensional Shock Loading [J]. Acta Materiala, 2002, 50: 4801-4811.
[15]
Graylll G T, Bourne N K, Millett J C F. Shock Response of Tantalum: Lateral Stress and Shear Strength througth the Front [J]. J Appl Phys, 2003, 94: 6430-6436.
[16]
Chen D N, Tan H, Yu Y Y, et al. A Void Coalescence-Based Spall Model [J]. Int J Imp Eng, 2006, 32: 1752-1767.
[17]
Rosenberg Z, Partom Y. Lateral Stress Measurement in Shock-Loaded Targets with Transverse Piezoresistive Gauges [J]. J Appl Phys, 1985, 58: 3072-3076.
[18]
Chen D N, Fan C L, Xie S G, et al. Study on Constitutive Relations and Spall Models for Oxygen-Free High-Conductivity Copper under Planar Shock Tests [J]. J Appl Phys, 2007, 101: 063532.
[19]
Tonks D L. Deviatoric Stresses and Plastic Strain Rates in Strong Shock Wave for Six Metals [R]. LA-12641, 1993.
[20]
Straub G K. Elastic Shear Modulus: Fits to Data and Extrapolation to Large Compressions and Negative Pressure [R]. LA-11806-MS, 1990.
[21]
Al'tshular L V, Pavlovsky M N, Komissarov V V, et al. On Shear Strength of Aluminium in Shock Waves [J]. Comb Expl Shock Waves, 1999, 35: 92-96.
[22]
Bakhrakh S M, Knyazev V N, Nizovtzev P N, et al. Computational and Theoretical Analysis of the Method of Main Stresses, Problems of Atomic Science and Technology [J]. Series: Theoretical and Applied Physics, 2001: 13-17. (in Russ)
[23]
Kanel G I, Razorenov S V, Fortov V E. Shock-Wave Phenomena and the Properties of Condensed Matter [M]. New York: Springer-Verlag Inc, 2004: 55-58.