全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于自由面速度剖面解读层裂问题的几点商榷

DOI: 10.11858/gywlxb.2009.01.001, PP. 1-8

Keywords: 层裂,损伤,自由面速度剖面

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于对层裂问题的理解和相关文献,就自由面速度剖面解读层裂问题的局限性提出了一些看法。指出:自由面速度剖面测量给出的层裂破坏过程是间接信息,而不是直接信息,用它确定的理论模型和数值模拟参数,也许并没有真实地反映层裂过程的物理本质;层裂强度常被人们用来表征材料在高应变率下的抗拉伸能力,但是在目前的层裂强度计算公式中没有考虑损伤介质对波剖面传播的影响,使得计算结果明显偏低;传统的单点测量得到的结果有很大的局限性,对于层裂问题,采用概率评估或者置信度评估,也许更符合真实情况。建议:为了全面真实地评价层裂问题中的物理、力学过程,应该加快发展更多的实验探测和诊断技术,尤其是对内部损伤状态的观测。

References

[1]  Meyers M A, Aimone C T. Dynamic Fracture (Spalling) of Metals [J]. Progress in Materials Science, 1983, 28: 1-96.
[2]  裴晓阳. 损伤度函数模型用于碰撞和内爆加载下钢层裂的二维数值模拟研究 [D]. 绵阳: 中国工程物理研究院, 2005.
[3]  Qi M L. Critical Behavior in Dynamic Tensile Fracture of High Purity Aluminum [D]. Wuhan: Wuhan University of Technology, 2007. (in Chinese)
[4]  祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉: 武汉理工大学, 2007.
[5]  Liu C L, Ahrens J A. Stress Wave Attenuation in Shock-Damaged Rock [J]. J Geophys Res, 1997, 102(B3): 5243-5250.
[6]  McCluskey C W, Wilke M D, Anderson W W, et al. Asay Window: A New Spall Diagnostic [J]. Rev Sci Instrum, 2006, 77: 113902.
[7]  Hixson R S, Vorthman J E, Zurek A K, et al. Spall Response of U-Nb(6%) Alloy [A]//Shock Compression of Condensed Matter-1999 [C]. New York: Melville, 2000: 489-492.
[8]  Curran D R, Seaman L, Shockey D A. Dynamic Failure of Solid [J]. Phys Rep, 1987, 147(5&6): 253-388.
[9]  Rinehart J S. Some Quantitative Data Bearing on the Scabbing of Metals under Explosive Attack [J]. J Appl Phys, 1951, 22: 555.
[10]  Bread B R, Mader C L, Venable D. Technique for the Determination of Dynamic-Tensile-Strength Characteristics [J]. J Appl Phys, 1967, 38(8): 3271-3275.
[11]  Tuler F R, Butcher B M. A Criterion for the Time Dependence of Dynamic Fracture [J]. Int J Fract Mech, 1968, 4(4): 431-437.
[12]  Davison L, Stevens A L. Continuum Measures of Spall Damage [J]. J Appl Phys, 1972, 43(3): 988-994.
[13]  Bai Y, Han W, Bai J. A Statistical Evolution Equation of Micro-Damage and Its Application [A]//McDowell D L. Applications of Continuum Damage Mechanics to Fatigue and Fracture, ASTM STP 1315 [C].American Society for Testing and Materials, 1997: 150-162.
[14]  Bai J, Xia M F, Ke F J. Properties of the Statistical Damage Evolution Equation and Its Numerical Simulation [J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(1): 38-48. (in Chinese)
[15]  白洁, 夏蒙棼, 柯孚久, 等. 损伤统计演化方程的性质和数值模拟 [J]. 力学学报, 1999, 31(1): 38-48.
[16]  Strachan A, Cagin T, Goddard W A Ⅲ. Critical Behavior in Spallation Failure of Metals [J]. Phys Rev B, 2001, 63: 060103.
[17]  Seppala E T, Belak J, Rudd R E. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals [J]. Phys Rev Lett, 2004, 93: 245503.
[18]  Seppala E T, Belak J, Rudd R E. Effect of Stress Triaxiality on Void Growth in Dynamic Fracture of Metals: A Molecular Dynamic Study [J]. Phys Rev B, 2004, 69: 134101.
[19]  Wang Y G, He H L, Wang L L, et al. Time-Resolved Dynamic Tensile Spallation of Pure Aluminum under Laser Irradiation [J]. J Appl Phys, 2006, 100: 033511.
[20]  Wang Y G. Dynamic Tensile Spall of Ductile Metal and Its Critical Damage Evolution Model [D]. Mianyang: CAEP, 2006. (in Chinese)
[21]  王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 绵阳: 中国工程物理研究院, 2006.
[22]  Holtkamp D B, Clark D A, Ferm E N, et al. A Survey of High Explosive-Induced Damage and Spall in Selected Metals Using Proton Radiography [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: Melville, 2004: 477-482.
[23]  Anderson W W, Cverna F, Hixson R S, et al. Phase Transition and Spall Behavior in β-Tin [A]//Shock Compression of Condensed Matter-1999 [C]. New York: Melville, 2000: 443-446.
[24]  Bontaz-Carion J, Pellegrini Y P. X-Ray Microtomography Analysis of Dynamic Damage in Tantanlun [J]. Advanced Engineering Materials, 2006, 8(6): 480-486.
[25]  Grady D. Scattering as a Mechanism for Structured Shock Waves in Metals [J]. J Mech Phys Solids, 1998, 46(10): 2017-2032.
[26]  Sun J S, Zhu J S, Jia X R. An Analysis of Compaction Wave in Granular Material [J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 423-433. (in Chinese)
[27]  孙锦山, 朱建士, 贾祥瑞. 颗粒材料中致密波结构研究 [J]. 力学学报, 1999, 31(4): 423-433.
[28]  Novikov S A. Spall Strength of Materials under Shock Load [J]. J Appl Mech Tech Phys, 1967, 3: 109-123. (in Russian)
[29]  Stepanov G V, Romanchenko V I, Astanin V V. Experimental Determination of Failure Stresses under Spallation in Elastic-Plastic Waves [J]. Probl Strength, 1977, 8: 96-120. (in Russian)
[30]  Romanchenko V I, Stepanov G V. The Dependence of Critical Stress upon the Time Parameters of Load at Spalling in Copper, Aluminum, and Steel [J]. J Appl Mech Tech Phys, 1980, 21(4): 141-157. (in Russian)
[31]  Pei X Y. Two Dimensional Numerical Simulation of Dynamic Spallation of Steel Plate under Impact and Cylinder under Implosion with Damage Function Model [D]. Mianyang: CAEP, 2005. (in Chinese)
[32]  Chhabildas L C, Trott W M, Reinhart W D, et al. Incipient Spall Studies in Tantalum Microstructural Effects [A]//Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001 [C]. New York: Melville, 2002: 483-486.
[33]  Hanson K M, Hemez F M. Uncertainty Quantification of Simulation Codes Based on Experimental Data [R]. LA-UR-03-0171, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133