全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于微孔洞长大惯性机制的动态拉伸断裂模型构建

DOI: 10.11858/gywlxb.2012.03.008, PP. 294-300

Keywords: 固体力学,微孔洞长大,惯性,动态拉伸断裂

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用圆柱体胞模型分析方法,对球形微孔洞在不同加载应变率条件下的动力学响应行为进行了有限元分析,计算结果表明:在微孔洞稳定增长阶段,惯性对微孔洞的快速增长起着关键性作用,其它因素的影响基本可以忽略,微孔洞半径增长率与平均应力的平方根成正比。提出了一个微孔洞增长惯性机制的损伤度演化方程,结合逾渗软化函数描述微孔洞聚集行为,从而构建了一个新的动态拉伸断裂模型,并通过自定义材料模型子程序,把断裂模型嵌入LS-DYNA程序中,对无氧铜平板撞击层裂实验进行了数值模拟研究,计算结果与实验结果的比较令人满意,初步检验了新模型的实用性。

References

[1]  Antoun T H, Seaman L, Curran D R, et al. Spall Fracture [M]. New York: Springer, 2003. [2] Curran D R, Seaman L, Shockey D A. Dynamic failure of solids [J]. Phys Rep, 1987, 147(5&6): 253-388.
[2]  Czarnota C, Jacques N, Mercier S, et al. Modeling of dynamic ductile fracture and application to simulation of plate impact tests on tantalum [J]. J Mech Phys Solids, 2008, 56: 1624-1650.
[3]  Molinari A, Wright T W. A physical model for nucleation and early growth of voids in ductile materials under dynamic loading [J]. J Mech Phys Solids, 2005, 53: 1476-1504.
[4]  Seaman L, Curran D R and Shockey D A. Computational models for ductile and brittle fracture [J]. J Appl Phys, 1976, 47: 4814-4824.
[5]  Ortiz M, Molinari A. Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material [J]. J Appl Mech, 1992, 59: 48-53.
[6]  Wu X Y, Ramesh K T, Wright T W. The dynamic growth of a single void in a viscoplatic material under transient hydrostatic loading [J]. J Mech Phys Solids, 2003, 51: 1-26.
[7]  Tszeng T C. Quasistatic and dynamic growth of sub-microscale spherical voids [J]. Mech Mater, 2009, 41: 584-598.
[8]  Liu B, Qiu X, Huang Y, et al. The size effect on void growth in ductile materials [J]. J Mech Phys Solids, 2003, 51: 1171-1178.
[9]  Horstemeyer M F, Matalanis M M, Sieber A M, et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence [J]. Int J Plast, 2000, 16: 979-1015.
[10]  Wang Y G, He H L, Wang L L, et al. Percolation description for the early stage of void coalescence during dynamic tensile fracture in ductile materials [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 127-132. (in Chinese)
[11]  王永刚, 贺红亮, 王礼立, 等. 延性材料动态拉伸断裂早期连通过程的逾渗描述 [J]. 高压物理学报, 2006, 20(2): 127-132.
[12]  Seppala E T, Belak J, Rudd R E. Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study [J]. Phys Rev B, 2004, 69: 134101.
[13]  Seppala E T, Belak J, Rudd R E. Onset of void coalescence during dynamic fracture of ductile metals [J]. Phys Rev Lett, 2004, 93: 245503.
[14]  Zhang X, Liu Q C, Mai Y W. Numerical study on void growth in rate and temperature dependent solids [J]. Int J Fract, 2006, 142: 119-136.
[15]  Hallquist J O. LS-DYNA Theoretical Manual [Z]. California: Livermore Software Technology Corporations, 1998.
[16]  Poritsky H. The collapse or growth of a spherical bubble or cavity in a viscous fluid [A]// Sternberg E. Proceedings of the First US National Congress on Applied Mechanics [C]. New York: ASME, 1952: 813-823.
[17]  Huo B, Zheng Q S, Huang Y. A note on the effect of surface energy and void size to void growth [J]. Eur J Mech A/Solids, 1999, 18: 987-994.
[18]  Qi M L, He H L. Simulation of critical behavior on damage evolution [J]. Chin Phys B, 2010, 19(3): 036201.
[19]  Wang Y G, He H L, Wang L L, et al. Time-resolved dynamic tensile spall of pure aluminum under laser irradiation [J]. J Appl Phys, 2006, 100: 033511.
[20]  Johnson J N. Dynamic fracture and spallation in ductile solids [J]. J Appl Phys, 1981, 52(4): 1812-1825.
[21]  Minich R W, Cazamias J U, Kumar M, et al. Effect of microstructural length scales on spall behavior of copper [J]. Metall Mater Trans A, 2004, 35A: 2663-2673.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133