全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sodalime玻璃材料中失效波形成和传播研究

DOI: 10.11858/gywlxb.2012.03.001, PP. 241-250

Keywords: 失效波速,延迟时间,Soda,lime玻璃,弹性微裂纹统计模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究冲击载荷作用下Sodalime玻璃材料中失效波的形成和传播,通过轻气炮加载平板撞击实验,采用双螺旋锰铜压阻传感器,在一发实验中同时测量4种不同厚度试件背面与有机玻璃背板间界面处的纵向应力时程曲线,根据测量结果得到试件中失效波的传播轨迹。通过改变碰撞速度,对不同加载条件下的失效波形成和传播规律进行了研究,结果表明,Sodalime玻璃材料在冲击作用下产生失效波所需的延迟时间随冲击载荷的增加而减小,失效波传播速度随冲击载荷的增加而增加。最后采用弹性微裂纹统计模型描述冲击载荷作用下Sodalime玻璃的破坏机制,并将模型嵌入LS-DYNA有限元程序中,模拟试件在不同加载条件下的平板碰撞,所得横向应力和自由面粒子速度曲线均可用于表征失效波破坏现象。根据数值模拟结果分析失效波的传播轨迹,与实验测量结果符合较好。

References

[1]  Rasorenov S V, Kanel G I, Fortov V E, et al. The fracture of glass under high pressure impulsive loading [J]. High Press Res, 1991, 6: 225-232.
[2]  Brar N S, Bress S J, Rosenberg Z. Impact-induced failure waves in glass bars and plates [J]. Appl Phys Lett, 1991, 59: 3396-3398.
[3]  Kanel G I, Bogach A A, Razorenov S V, et al. A study of the failure wave phenomenon in brittle materials [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: AIP Conference Proceedings, 2004: : 739-742.
[4]  He H L. Dynamic response and microstructure damage of brittle materials under shock wave compression [D]. Sichuan: Institute of Fluid Physics, CAEP, 1997.
[5]  Raiser G F, Clifton R J. Failure waves in uniaxial compression of an aluminosilicate glass [A]//Proceedings of Joint AIRAPT/APS Conference [C]. Colorado Springs, CO, 1993.
[6]  Brar N S. Failure waves in glass and ceramics under shock compression [A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. Snowbird, Utah: AIP, 2000: 601-606.
[7]  Zhao J H. Experimental and theoretical research on failure waves in glass-like brittle materials under shock wave loading [D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2001. (in Chinese)
[8]  赵剑衡. 冲击加载作用下玻璃等脆性材料失效波的实验与理论分析 [D]. 北京: 中国科学院力学研究所, 2001.
[9]  Kanel G I, Razorenov S V, Savinykh A S, et al. A study of failure wave phenomenon in glasses compressed at different levels [J]. J Appl Phys, 2005, 98: 113523(1)-113523(7).
[10]  Bourne N K, Rosenberg Z, Field J E. High-speed photography of compression failure waves in glasses [J]. J Appl Phys, 1995, 78: 3736-3739.
[11]  Chaudhri M M. The role of residual stress in a Prince Rupert's drop of soda-lime glass undergoing a self-sustained and stable destruction/fracture wave [J]. Phys Status Solidi A, 2009, 206: 1410-1413.
[12]  Cherepanov G P. Fracture waves revisited [J]. Int J Fract, 2009, 159: 81-84.
[13]  Chen D P, He H L, Jing F Q. Delayed failure of the shock compressed inhomogeneous brittle material [J]. J Appl Phys, 2007, 102: 033519(1)-03351(5).
[14]  Kanel G I, Rasorenov S V, Fortov, V E. The failure waves and spallations in homogeneous brittle material [A]//Schmidt S C, Dick R D, Forbes J W, et al. Shock Compression of Condensed Matter-1991 [C]. Amsterdam: North-Holland, 1992: 451-454.
[15]  Liu Z F, Yao G W, Zhan X Y. A damage accumulating modeling of failure waves in glass under high velocity impacting [J]. Appl Math Mech, 2001, 22(9): 983-987. (in Chinese)
[16]  刘占芳, 姚国文, 詹先义. 高速冲击条件下玻璃中破坏波的损伤累计模拟 [J]. 应用数学与力学, 2001, 22(9): 983-987.
[17]  Zhang Y G, Duan Z P, Zhang L S, et al. Experimental research on failure waves in soda-lime glass [J]. Exp Mech, 2011, 51: 247-253.
[18]  Bourne N K, Millett J C F, Rosenberg Z, et al. On the shock induced failure of brittle solids [J]. J Mech Phys Solids, 1998, 46(10): 1887-1908.
[19]  Bourne N K, Millett J C F, Rosenberg Z. Failure in shocked high-density glass [J]. J Appl Phys, 1996, 80: 4328-4331.
[20]  Kanel G I, Bogatch A A, Razorenov S V, et al. Transformation of shock compression pulse in glass due to the failure wave phenomena [J]. J Appl Phys, 2002, 92: 5045-5052.
[21]  Rosenberg Z, Ashuach Y, Dekel E. More on the behavior of soda lime glass under shock loading [J]. Int J Impact Eng, 2008, 35: 820-828.
[22]  Dienes J K. A statistical theory of fragmentation [A]//Kim Y S. Proceedings of the 19th US Symposium on Rock Mechanics [C]. University of Nevada, 1978: 51-55.
[23]  Addessio F L, Johnson J N. A constitutive model for the dynamic response of brittle materials [J]. J Appl Phys, 1990, 67: 3275-3286.
[24]  Zuo Q H, Addessio F L, Dienes J K, et al. A rate-dependent damage model for brittle materials based on the dominant crack [J]. Int J Solids Struct, 2006, 43: 3350-3380.
[25]  Tuler F R, Butcher B M. A criterion for the time dependence of dynamic fracture [J]. Int J Frat Mech, 1968, 4: 431-437.
[26]  Freund L B. Dynamic Fracture Mechanics [M]. Cambridge: Cambridge University Press, 1993.
[27]  Klepaczko H S Jr. Numerical study of spalling in an aluminum alloy 7020-T6 [J]. Int J Impact Eng, 1999, 22: 649-73.
[28]  Bouzid S, Nyoungue A, Azari Z, et al. Fracture criterion for glass under impact loading [J]. Int J Impact Eng, 2001, 25: 831-845.
[29]  Evans A G. Slow crack growth in brittle materials under dynamic loading conditions [J]. Int J Fract, 1974, 10(2): 251-259.
[30]  Charles R J. Dynamic fatigue of glass [J]. J Appl Phys, 1958, 12: 1652-1657.
[31]  Dienes J K. Strain-softening via SCRAM, LA-UR-98-3620 [R]. Washington, DC: Los Alamos National Laboratory, 1998.
[32]  Espinosa H D, Xu Y P, Brar N S. Micromechanics of failure waves in glass: Ⅱ, modeling [J]. J Am Ceram Soc, 1997, 80(8): 2074-2085.
[33]  Chen D N, Fan C L, Xie S G et al. Study on constitutive relations and spall models for oxygen-free high conductivity copper under planar shock test [J]. J Appl Phys, 2007, 101: 063532(1)-063532(9).
[34]  Zhou J W, Xu W Y, Yang X G. A microcrack damage model for brittle rocks under uniaxial compression [J]. Mech Res Commun, 2010, 37: 399-405.
[35]  Rajendran A M, Grove D J. Modeling the shock response of silicon carbide, boron carbide and titanium diboride [J]. Int J Impact Eng, 1996, 18(6): 611-631.
[36]  Ayatollahi M R, Aliha M R M. Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion [J]. Int J Solids Struct, 2009, 46: 311-321.
[37]  Rao Q H, Sun Z Q, Stephansson O, et al. Shear fracture (Mode Ⅱ) of brittle rock [J]. Int J Rock Mech Min, 2003, 40(3): 355-375.
[38]  Ayatollahi M R, Torabi A R. Determination of mode Ⅱ fracture toughness for U-shaped notches using Brazilian disc specimen [J]. Int J Solids Struct, 2010, 47: 454-465.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133