全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压烧结镀Cr、Ti膜金刚石/铜复合材料热导率研究

DOI: 10.11858/gywlxb.2012.03.010, PP. 306-312

Keywords: 磁控溅射,高温高压,热导率,界面热阻

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用磁控溅射方法,在金刚石表面镀覆活性金属Cr膜和Ti膜,在高温高压下合成了镀活性金属膜金刚石/铜复合材料。实验发现,活性金属的加入增强了金刚石与铜界面间的结合强度,减少了界面热阻,提高了复合材料的热导率。复合材料热导率随着金刚石体积分数的增加而降低,随着金刚石的粒度增大而提高。这主要是由界面热阻引起的,可以通过增大金刚石粒度和改善界面状态来提高复合材料热导率。

References

[1]  Liu C Z, Wang Z F, Jiang G S. Advances in metal-matrix material for electronic packaging [J]. Ordnance Material Science and Engineering, 2001, 24(2): 49-53.(in Chinese)
[2]  刘春正, 王志法, 姜国圣. 金属基电子封装材料进展 [J]. 兵器材料科学与工程, 2001, 24(2): 49-53.
[3]  Yang B C. Research advances in material for electronic packaging [J]. Function Materials Information, 2006, 5(3): 9-13. (in Chinese)
[4]  杨邦朝. 电子封装材料的研究进展 [J]. 功能材料与信息, 2006, 5(3): 9-13. (in Chinese)
[5]  Wang T J, Zhou W P, Xiong N, et al. PM materials for electronic packaging [J]. Powder Metallurgy Technology, 2005, 23(2): 145-150. (in Chinese)
[6]  王铁军, 周武平, 熊宁, 等. 电子封装用粉末冶金材料 [J]. 粉末冶金技术, 2005, 23(2): 145-150.
[7]  Zheng X H, Hu M, Zhou G Z. Status and prospects of new materials for electric packing [J]. Journal of Jiamusi University(Natural Science Edition), 2005, 23(3): 460-464. (in Chinese)
[8]  郑小红, 胡明, 周国柱. 新型电子封装材料的研究现状及展望 [J]. 佳木斯大学学报(自然科学版), 2005, 23(3): 460-464.
[9]  Tong Z S, Shen Z S. Status and development of materials for metal packaging [J]. Electronics & Packaging, 2005, 5(3): 6-14. (in Chinese)
[10]  童震松, 沈卓身. 金属封装材料的现状及发展 [J]. 电子与封装, 2005, 5(3): 6-14.
[11]  Luo X, Yang Y Q, Wang H Y, et al. Research progress on the copper matrix composites [J]. Materials Science, 2006, 20(8): 76-78. (in Chinese)
[12]  罗贤, 杨延清, 王含英, 等. 铜基复合材料的研究现状 [J]. 材料导报, 2006, 20(8): 76-78.
[13]  Yoshida K, Morigami H. Thermal properties of diamond/copper composite material [J]. Microelectron Reliab, 2004, 44: 303-308.
[14]  Schubert Th, Trindade B. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications [J]. Mater Sci Eng A, 2008, 475: 39-44.
[15]  Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X(X= Cr, B) diamond composites [J]. Scripta Mater, 2007, 57: 988-991.
[16]  Chu K, Liu Z F, Jia C C. Thermal conductivity of SPS consolidated Cu/Diamond composites with Cr-coated diamond particles [J], J Alloy Compd, 2010, 490 , 453-458.
[17]  Ma S Y, Wang E Z, Lu W Y, et al. Study on thermal conductivity of diamond/copper composite [J]. Material & Heat Treatment, 2008, 37(4): 36-38. (in Chinese)
[18]  马双彦, 王恩泽, 鲁伟员. 金刚石/铜复合材料热导率研究 [J]. 热加工工艺, 2008, 37(4): 36-38.
[19]  Wang Y H, Wang M Z, Zhang X Y. Study on Cr coating on diamond by magnetron sputtering [J]. Thin Film Science and Technology, 1992, 5(4): 29-34. (in Chinese)
[20]  王艳辉, 王明智, 张湘仪. 金刚石表面磁控溅射镀Cr的研究 [J]. 薄膜科学与技术, 1992, 5(4): 29-34.
[21]  Lin Z D. Metal and diamond bonding technology and its application [J]. Physics, 1990, 19(7): 420-421. (in Chinese)
[22]  林增栋. 金属与金刚石粘结技术及其应用 [J]. 物理, 1990, 19(7): 420-421.
[23]  Progelhof R C, Throne J L, Ruetsch R R. Methodes for predicting the thermal conductivity of composite systems [J]. Polymer Eng Sci, 1986, 16(9): 615-616.
[24]  Davis L C, Artz B E. Thermal conductivity of metal matrix composites [J]. J Appl Phys, 1995, 77(10): 4954-4960.
[25]  Stoner R J , Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Phys Rev B, 1993, 48(22): 16373-16387.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133