全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水下爆炸毁伤水下目标的能量分布特征

DOI: 10.11858/gywlxb.2012.05.009, PP. 537-544

Keywords: 水下爆炸,小波包,冲击波,距离判别分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对某水下目标的抗水下爆炸实验数据,利用小波包良好的时频局部化性质,对被监测水下目标内部装置的冲击加速度信号进行了能量分析,得到了冲击信号的时频分布和不同频带上的能量分布。冲击信号的频带能量分布与目标毁伤的关系密切,选用冲击信号峰值、冲击信号主振频带能量、水下目标内部装置自振频率所在频带能量作为判别因子,建立距离判别模型,对水下目标毁伤情况进行了预测;利用回代估计法对模型的合理性进行了检验。研究结果表明,预测结果与实际结果相符,证明将频带能量作为水下爆炸毁伤水下目标的特征指标是合理的。

References

[1]  Ergin A. The response behavior of a submerged cylindrical shell using the doubly asymptotic approximation method (DAA) [J]. Comput Struct, 1997, 62(6): 1025-1034.
[2]  Jia X Z, Hu Y T, Dong M R, et al. Numerical study on influencing factors of dynamic response of cylindrical shell subjected to deep water blast wave [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 208-214. (in Chinese)
[3]  贾宪振, 胡毅亭, 董明荣, 等.深水爆炸冲击波作用下圆柱壳动态响应影响因素的数值模拟研究 [J].高压物理学报, 2008, 22(2): 208-214.
[4]  Lin X B, Zhang Y P, Liu Z X, et al. Wavelet analysis and hilbert-huang transform of blasting bibration signal [J]. Explosion and Shock Waves, 2005, 25(6): 528-535. (in Chinese)
[5]  李夕兵, 张义平, 刘志祥, 等.爆破震动信号的小波分析与HHT变换 [J].爆炸与冲击, 2005, 25(6): 528-535.
[6]  Mallat S G. A theory for multi-dimension signal decomposition: The wavelet models [J]. IEEE Trans Pattern Analysis Machine Intell, 1989, 11: 674-693.
[7]  Daubechies I. The wavelet transform, time-frequency localization and signal analysis [J]. IEEE Trans Inf Theory, 1990, 36(5): 961-1005.
[8]  Hu C H, Zhang J B, Xia J, et al. System Analysis and Processing Based on MATLAB-Wavelet Analysis [M]. Xi'an: Xidian University Press, 1999: 210-232. (in Chinese)
[9]  胡昌华, 张军波, 夏军, 等. 基于MATLAB的系统分析与统计--小波分析 [M].西安: 西安电子科技大学出版社, 1999: 210-232.
[10]  Ma G W, Hao H, Zhou Y X. Assessment of structure damage to blasting induced ground motions [J]. Eng Struct, 2000, 22(10): 1378-1389.
[11]  Charles K C. An Introduction to Wavelets [M]. New York: Academic Press, 1992: 297-333.
[12]  Cole R H. Underwater Explosions [M]. New Jersy: Princeton University Press, 1948: 10-50.
[13]  Daubechies I. Orthonormal bases of compactly supported wavelet [J]. Commun Pur Appl Math, 1988, 41(7): 909-996.
[14]  Lin D C, Shi H J, Bai C H, et al. Time-frequency analysis of explosion seismic effects [J]. Explosion and Shock Waves, 2003, 23(1): 31-35. (in Chinese)
[15]  林大超, 施惠基, 白春华, 等.爆炸地震效应的时频分析 [J].爆炸与冲击, 2003, 23(1): 31-35.
[16]  Gao H X. Applied Multivariate Statistical Analysis [M]. Beijing: Peking University Press, 2005: 1-100. (in Chinese)
[17]  高惠璇.应用多元统计分析 [M].北京: 北京大学出版社, 2005: 1-100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133