全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粉系冷激波灭火弹内壁处压力研究

DOI: 10.11858/gywlxb.2013.04.020, PP. 592-598

Keywords: 冷激波灭火弹,压力测试,灭火介质

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究冷激波灭火系统壳体破碎和灭火介质爆炸抛洒初期的运动规律,首先需要了解冷激波灭火弹内壁处的压力峰值情况。根据量纲分析、力学结构及爆炸实验,研究了不同尺寸、不同药量下粉系冷激波灭火弹内壁处压力的变化规律。结果表明:粉系冷激波灭火弹内壁处的压力峰值与装药量和弹体直径有关;内壁处压力波形为矩形,当弹体内径为104mm时,内壁高压持续时间大于100μs,当弹体内径为220mm时,内壁高压持续时间大于200μs;同等弹体直径下,粉系灭火介质的比药量比水系灭火介质的比药量大。由于介质压缩能耗较大,建议采用更细的纳米级粉体或预压缩的粉团作为粉系冷激波灭火弹的灭火介质。

References

[1]  Jiang Y G, Shen Z W. Influence of center high explosive charge ratio to the effect of extinguishing by cold shock wave fire extinguishing bomb [C]//New Technology of Blasting Engineering in China Ⅱ. Beijing: Metallurgical Industry Press, 2008: 875-880. (in Chinese)
[2]  蒋耀港, 沈兆武. 比药量对冷激波灭火弹灭火效果的影响 [C]//中国爆破新技术Ⅱ. 北京: 冶金工业出版社, 2008: 875-880.
[3]  Jiang Y G, Shen Z W, Ma H H. Mechanism and application of cold shock wave fire extinguishing bomb [J]. Fire Safety Science, 2007, 16(4): 226-231. (in Chinese)
[4]  Blasting Safety Regulation [M]. Translated by Institute of Safety Technology, Ministry of Metallurgical Industry. Wuhan, 1983.
[5]  Grishin A M, Kovalev Y M. Experimental and theoretical investigation of the effect of an explosion on the front of crown forest fires [J]. Combust Explo Shock Waves, 1989, 25(6): 724-730.
[6]  Zhang Y, Ren B, Chang X Y, et al. Numerical simulation about the process that a shock wave induces the combustible gas deflagrating [J]. Journal of National University of Defense Technology, 2001, 23(2): 33-37. (in Chinese)
[7]  张艳, 任兵, 常熹钰, 等. 激波诱导可燃气体爆燃的数值模拟 [J]. 国防科技大学学报, 2001, 23(2): 33-37.
[8]  蒋耀港, 沈兆武, 马宏昊. 冷激波灭火弹的灭火机理及应用研究 [J]. 火灾科学, 2007, 16(4): 226-231.
[9]  Jiang Y G, Shen Z W, Ma H H, et al. Study of the mechanism on cold shock-wave fire-extinguishing system [J]. Journal of Safety and Environment, 2009, 9(5): 154-157. (in Chinese)
[10]  蒋耀港, 沈兆武, 马宏昊, 等. 冷激波灭火系统扑灭明火现象的机理研究 [J]. 安全与环境学报, 2009, 9(5): 154-157.
[11]  Henrych J. Dynamics of Explosion and Its Use [M]. New York, USA: Elsevier Scientific Pub Co, 1979.
[12]  Vogler T J, Lee M Y, Grady D E. Static and dynamic compaction of ceramic powders [J]. Int J Solids Struct, 2007, 44(2): 636-658.
[13]  Abbasi T, Abbasi S A. Dust explosions-cases, causes, consequences, and control [J]. J Hazard Mater, 2007, 140(1/2): 7-44.
[14]  Klemens R, Gieras M, Kaluzny M. Dynamics of dust explosions suppression by means of extinguishing powder in various industrial conditions [J]. J Loss Prev Process Ind, 2007, 20(4/5/6): 664-674.
[15]  Wu C Y, Ruddy O M, Bentham A C, et al. Modelling the mechanical behaviour of pharmaceutical powders during compaction [J]. Powder Technol, 2005, 152(1/2/3): 107-117.
[16]  Ni X, Kuang K, Yang D, et al. A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core-shell structure [J]. Fire Saf J, 2009, 44(7): 968-975.
[17]  Wu X T, Hu S S, Tian J. Stress-measurement method by PVDF gauge and its application to impact test for concrete [J]. Explosion and Shock Waves, 2007, 27(5): 411-415. (in Chinese)
[18]  巫绪涛, 胡时胜, 田杰. PVDF应力测量技术及在混凝土冲击实验中的应用 [J]. 爆炸与冲击, 2007, 27(5): 411-415.
[19]  Ma H H. Research on the principle and application of the high-safe detonator [D]. Hefei: University of Science and Technology of China, 2008. (in Chinese)
[20]  马宏昊. 高安全雷管机理与应用的研究 [D]. 合肥: 中国科学技术大学, 2008.
[21]  Jin S H, Song Q C. Explosive Theories [M]. Xi'an: Northwestern Polytechnical University Press, 2010: 24-37. (in Chinese)
[22]  金韶华, 松全才. 炸药理论 [M]. 西安: 西北工业大学出版社, 2010: 24-37.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133