全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

表面状态对强流脉冲电子束辐照诱发金属表面熔坑的影响

DOI: 10.11858/gywlxb.2013.01.014, PP. 99-104

Keywords: 强流脉冲电子束,304不锈钢,熔坑

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了考察材料晶体学特性对表面熔坑形成机制的影响,利用强流脉冲电子束(HCPEB)对喷丸前、后的304奥氏体不锈钢进行表面辐照处理,对HCPEB诱发的表面熔坑形貌进行了详细的表征。实验结果表明,HCPEB辐照后样品表面形成了大量的火山状熔坑,熔坑数密度和熔坑尺寸随电子束能量的增加而减小,材料表面的杂质或夹杂物容易成为熔坑的核心,并在熔坑形成的喷发过程中被清除,起到净化表面的作用。此外,喷丸前、后样品表面熔坑数密度遵循相似的分布规律,喷丸处理使熔坑数密度显著增大,表明材料的晶体学特性对表面熔坑形成有重要的影响,晶界、位错等结构缺陷是熔坑形核的择优位置。

References

[1]  Guan Q F, Pan L, Zou H, et al. Stacking fault tetrahedra in aluminum [J]. J Mater Sci, 2004, 39(20): 6349-6351.
[2]  Cheng D Q, Guan Q F, Zhu J, et al. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam [J]. Acta Physica Sinica, 2009, 58(10): 7300-7305. (in Chinese)
[3]  程笃庆, 关庆丰, 朱健, 等. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制 [J]. 物理学报, 2009, 58(10): 7300-7305.
[4]  Wang X T, Guan Q F, Qiu D H, et al. Defect microstructures in polycrystalline pure copper induced by high-current pulsed electron beam: The vacancy defect clusters and surface micropores [J]. Acta Physica Sinica, 2010, 59(10): 7252-7257. (in Chinese)
[5]  王雪涛, 关庆丰, 邱冬华, 等. 强流脉冲电子束作用下金属纯Cu的微观结构状态--空位簇缺陷及表面微孔结构 [J]. 物理学报, 2010, 59(10): 7252-7257.
[6]  Guan Q F, Gu Q Q, Li Y, et al. Microstructures in polycrystalline pure copper induced by high-current pulsed electron beam: Deformation structures [J]. Acta Physica Sinica, 2011, 60(8): 086106. (in Chinese)
[7]  关庆丰, 顾倩倩, 李艳, 等. 强流脉冲电子束作用下金属纯Cu的微观结构状态--变形结构 [J]. 物理学报, 2011, 60(8): 086106.
[8]  Zhang K M, Yang D Z, Zou J X, et al. Improved in vitro corrosion resistance of a NiTi alloy by high current pulsed electron beam treatment [J]. Surf Coat Technol, 2006, 201(6): 3096-3102.
[9]  Zou H, Zou J X, Chen Y J, et al. Crater-shaped damages bombarded by high current pulsed electron beams [J]. Chinese Journal of Vacuum Science and Technology, 2004, 24(5): 343-346. (in Chinese)
[10]  邹慧, 邹建新, 陈亚军, 等. 碳素钢强流脉冲电子束处理后的表面火山口状凹坑研究 [J]. 真空科学与技术学报, 2004, 24(5): 343-346.
[11]  Qin Y, Dong C, Wang X G, et al. Temperature profile and crater formation induced in high-current pulsed electron beam processing [J]. J Vac Sci Technol A, 2003, 21(6): 1934-1938.
[12]  Qin Y, Wu A M, Zou J X, et al. Numerical simulation research of crater formation induced by high current pulsed electron beam bombardment [J]. Transactions of Metal Heat Treatment, 2003, 24(1): 85-89. (in Chinese)
[13]  秦颖, 吴爱民, 邹建新, 等. 强流脉冲电子束轰击产生表面熔坑的数值模拟研究 [J]. 金属热处理学报, 2003, 24(1): 85-89.
[14]  Proskurovsky D I, Rotshtein V P, Ozur G E, et al. Pulsed electron-beam technology for surface modification of metallic materials [J]. J Vac Sci Technol A, 1998, 16(4): 2480-2488.
[15]  Han J, Sheng G M, Hu G X. Self-nanocrystallized mechanism for 0Cr18Ni9Ti by means of high energy shot peening [J]. Journal of Central South University (Science and Technology), 2009, 40(3): 644-649. (in Chinese)
[16]  韩靖, 盛光敏, 胡国雄. 高能喷丸0Cr18Ni9Ti不锈钢自纳米化机理 [J]. 中南大学学报(自然科学版), 2009, 40(3): 644-649.
[17]  Qin Y, Zou J X, Dong C, et al. Temperature-stress fields and related phenomena induced by a high current pulsed electron beam [J]. Nucl Instrum Meth B, 2004, 225(4): 544-554.
[18]  Zhang K M, Zou J X, Grosdidier T, et al. Formation and evolution of craters in carbon steels during low-energy high-current pulsed electron-beam treatment [J]. J Vac Sci Technol A, 2009, 27(5): 1217-1226.
[19]  Shulov V A, Nochovnaya N A. Crater formation on the surface of metals and alloys during high power ion beam processing [J]. Nucl Instrum Meth B, 1999, 148(1/2/3/4): 154-158.
[20]  Zhang K M, Zou J X, Grosdidier T, et al. Improved pitting corrosion resistance of AISI 316L stainless steel treated by high current pulsed electron beam [J]. Surf Coat Technol, 2006, 201(3/4): 1393-1400.
[21]  Schiller S, Heisig U, Panzer S. Electron Beam Technology [M]. New York: John Wiley & Sons Inc, 1982: 29-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133