全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动态拉伸断裂的物理判据研究

DOI: 10.11858/gywlxb.2013.02.001, PP. 153-161

Keywords: 拉伸断裂,损伤演化,物理判据

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了动态拉伸断裂“物理判据”的基本内涵,基本思想,实验依据和实验验证。基于对动态拉伸断裂细微观物理机制和过程特征的认识,建立了损伤度函数模型和逾渗软化函数,提出了两个损伤特征物理量,即聚集临界损伤度(Dl)和断裂临界损伤度(Df),描述了断裂事件由缓慢演化过渡到特征临界状态、再到灾变断裂的演化规律。该物理判据是动态拉伸断裂的一种物理约束,表征了材料失效破坏与损伤演化的内禀特性,为预测复杂加载应力和复杂几何构型的动态拉伸断裂问题提供了可能性。

References

[1]  Yu M H. Advances in strength theories for materials under complex stress state in the 20th century [J]. Advances in Mechanics, 2004, 34(4): 529-560. (in Chinese)
[2]  俞茂宏. 强度理论百年总结 [J]. 力学进展, 2004, 34(4): 529-560.
[3]  Chen D N, Wang D S, Ma S H, et al. Two kinds of dynamic fracture[J]. Explosion and Shock Waves, 1987, 7(1): 27-33. (in Chinese)
[4]  陈大年, 王德生, 马松合, 等. 两类动态断裂 [J]. 爆炸与冲击, 1987, 7(1): 27-33.
[5]  Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Phil Trans Roy Soc, 1914, 213A(10): 437-456.
[6]  Rinehart J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. J Appl Phys, 1951, 22(5): 555-562.
[7]  Whiteman P. Atomic weapons research establishment report, AWRESWAN-10/61 [R]. Aldermaston, UK: Part of Ministry of Defence, 1962.
[8]  Bread B R, Mader C L, Venable D. Technique for the determination of dynamic-tensile-strength characteristics [J]. J Appl Phys, 1967, 38(8): 3271-3275.
[9]  Davison L, Stevens A L. Continuum measures of spall damage [J]. J Appl Phys, 1972, 43(3): 988-994.
[10]  Meyers M A, Aimone C T. Dynamic fracture (spalling) of metals [J]. Prog Mater Sci, 1983, 28: 1-96.
[11]  Curran D R, Seaman L, Shockey D A. Dynamic failure of solid [J]. Phys Rep, 1987, 147(5/6): 253-388.
[12]  Kanel G I. Dynamic strength of materials [J]. Fatigue Fract Eng Mater Struct, 1999, 22(11): 1011-1023.
[13]  Tonks D L, Zurek A K, Thissell W R. Void coalescence model for ductile damage [C]//Shock Compression of Condensed Matter-2001. New York: American Institute of Physics, 2002: 611-614.
[14]  Antoun T H, Seaman L, Curran D R, et al. Spall Fracture [M]. New York: Springer, 2003: 1-20.
[15]  Bai Y L, Ke F J, Xia M F. Formulation of statistical evolution of microcracks in solids [J]. Chinese Journal of Therortical and Applied Mechanics, 1991, 23(3): 290-298. (in Chinese)
[16]  白以龙, 柯孚久, 夏蒙棼. 固体中微裂纹系统统计演化的基本描述 [J]. 力学学报, 1991, 23(3): 290-298.
[17]  Chen D N, Yu Y Y, Yin Z H, et al. A new conceptual model to describe spallation [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 105-112. (in Chinese)
[18]  陈大年, 俞宇颖, 尹志华, 等. 一种新的概念性层裂模型 [J]. 高压物理学报, 2005, 19(2): 105-112.
[19]  Li Y C, Cao J D, Dong J, et al. Research of damage evolution equation and spallation criterion of 45# steel [J]. Chinese Quarterly of Mechanics, 2006, 27(2): 329-334. (in Chinese)
[20]  李永池, 曹结东, 董杰, 等. 45#钢的损伤演化方程和层裂准则研究 [J]. 力学季刊, 2006, 27(2): 329-334.
[21]  Huang Z P, Yang L M, Pan K L. Dynamic damage and failure of materials [J]. Advances in Mechanics, 1993, 23(4): 433-467. (in Chinese)
[22]  黄筑平, 杨黎明, 潘客麟. 材料的动态损伤和失效 [J]. 力学进展, 1993, 23(4): 433-467.
[23]  Feng J B. Damage function models for the dynamic ductile fracture of metals [D]. Beijing: Beijing Science and Technology University, 1992. (in Chinese)
[24]  封加波. 金属动态延性破坏的损伤度函数模型 [D]. 北京: 北京理工大学, 1992.
[25]  Wang Y G. Dynamic tensile spall of ductile metal and its critical damage evolution model [D]. Mianyang: CAEP, 2006. (in Chinese)
[26]  王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 绵阳: 中国工程物理研究院, 2006.
[27]  Luo J, Zhu W J, Lin L B, et al. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting [J]. Acta Physica Sinica, 2005, 54(6): 2791-2798. (in Chinese)
[28]  罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54(6): 2791-2798.
[29]  Zhu W J, Song Z F, Deng X, et al. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Phys Rev B, 2007, 75: 024104.
[30]  Deng X L, Zhu W J, Song Z F, et al. Microscopic mechanism of void coalescence under shock loading [J]. Acta Physica Sinica, 2009, 58(7): 4772-4778. (in Chinese)
[31]  邓小良, 祝文军, 宋振飞, 等. 冲击加载下孔洞贯通的微观机理研究 [J]. 物理学报, 2009, 58(7): 4772-4778.
[32]  Cui X L, Li Y J, Zhu W J, et al. Micro-analysis of the void growth of aluminum under shock loading [J]. Chinese Journal of High Pressure Physic, 2009, 23(1): 37-41. (in Chinese)
[33]  崔新林, 李英骏, 祝文军, 等. 冲击加载下铝中孔洞长大的微观机理分析 [J]. 高压物理学报, 2009, 23(1): 37-41.
[34]  Qi M L, He H L, Wang Y G, et al. Simulation of micro void evolution in the pure aluminum under dynamic loading [J]. Journal of Vibration and Shock, 2007, 26(8): 133-135. (in Chinese)
[35]  祁美兰, 贺红亮, 王永刚, 等. 动态冲击下纯铝中微损伤演化的仿真研究 [J]. 振动与冲击, 2007, 26(8): 133-135.
[36]  Wang Y G, He H L, Wang L L, et al. Percolation description for the early stage of void coalescence during dynamic tensile fracture in ductile materials [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 127-132. (in Chinese)
[37]  王永刚, 贺红亮, 王礼立, 等. 延性材料动态拉伸断裂早期连通过程的逾渗描述 [J]. 高压物理学报, 2006, 20(2): 127-132.
[38]  Qi M L. Critical behavior in dynamic tensile fracture of high purity aluminum [D]. Wuhan: Wuhan University of Technology, 2007. (in Chinese)
[39]  祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉: 武汉理工大学, 2007.
[40]  Qi M L, Luo C, He H L, et al. Damage property of incompletely spalled aluminum under shock wave loading [J]. J Appl Phys, 2012, 111(4): 043506.
[41]  Feng J B, Jing F Q, Zhang G R. Dynamic ductile fragmentation and the damage function model [J]. J Appl Phys, 1997, 81(6): 2575-2578.
[42]  Li X M, Jin X G, Li D H. The spall characteristics of cylindrical steel tube under inward explosion loading [J]. Explosion and Shock Waves, 2005, 25(2): 107-111. (in Chinese)
[43]  李雪梅, 金孝刚, 李大红. 钢圆管在内爆加载下的层裂特性研究 [J]. 爆炸与冲击, 2005, 25(2): 107-111.
[44]  Wang Y G, He H L, Wang L L. Critical damage evolution model for spall failure of ductile metals [J]. Mech Mater, 2013, 56: 131-141.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133