Richtmyer R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun Pur Appl Math, 1960, 13(2): 297-319.
[2]
Meshkov E E. Instability of the interface of two gases accelerated by a shock wave [J]. Sov Fluid Dyn, 1969, 4(5): 101-104.
[3]
Zhang Q, Sohn S-Ik. Quantitative theory of Richtmyer-Meshkov instability in three dimensions [J]. Z angew Math Phys, 1999, 50(1): 1-46.
[4]
Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes [J]. Proc R Soc A, 1950, 201(1065): 192-196.
[5]
Zhang Q, Sohn S-Ik. An analytical nonlinear theory of Richtmyer-Meshkov instability [J]. Phys Lett A, 1996, 212(3): 149-155.
[6]
Zhang Q, Sohn S-Ik. Nonlinear theory of unstable fluid mixing driven by shock wave [J]. Phys Fluids, 1997, 9(4): 1106-1124.
[7]
Li X L, Zhang Q. A comparative numerical study of the Richtmyer-Meshkov instability with nonlinear analysis in two and three dimensions [J]. Phys Fluids, 1997, 9(10): 3069-3077.
[8]
Sadot O, Erez L, Alon U, et al. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability [J]. Phys Rev Lett, 1998, 80(8): 1654-1657.
[9]
Meyer K A, Blewett P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids [J]. Phys Fluids, 1972, 15(5): 753-759.
[10]
Cloutman L D, Wehner M F. Numerical simulation of Richtmyer-Meshkov instabilities [J]. Phys Fluids A, 1992, 4(8): 1821-1830.
[11]
Grove J W, Holmes R H, Sharp D H, et al. Quantitative theory of Richtmyer-Meshkov instability [J]. Phys Rev Lett, 1993, 71(21): 3473-3476.
[12]
Holmes R H, Grove J W, Sharp D H. Numerical investigation of Richtmyer-Meshkov instability using front tracking [J]. J Fluid Mech, 1995, 301: 51-64.
[13]
Zhang Z Z, Wang J H. Turbulent mixing model and numerical simulation of Richtmyer-Meshkov instability [J]. Explosion and Shock Waves, 1997, 17(3): 199-206. (in Chinese)
Srebro Y, Elbaz Y, Sadot O, et al. A general buoyancy-drag model for the evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities [J]. Laser and Particle Beams, 2003, 21(3): 347-353.
[16]
Yang M, Wang L L, Zhang S D, et al. The study of turbulent mixing induced by Richtmyer-Meshkov instability using turbulence model [J]. Acta Aerodynamica Sinica, 2010, 28(1): 119-123. (in Chinese)
Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock [J]. J Fluid Mech, 2006, 557: 29-61.
[19]
Thornber B, Drikakis D. Large-eddy simulation of shock-wave-induced turbulent mixing [J]. Journal of Fluid Engineering, 2007, 129(12): 1504-1513.
[20]
Lombardini M, Deiterding R. Large-eddy simulation of Richtmyer-Meshkov instability in a converging geometry [J]. Phys Fluids, 2010, 22(9): 091112.
[21]
Schilling O, Latini M, Don W S. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability [J]. Phys Rev E, 2007, 76(2): 026319(1)-026319(28).
[22]
Latini M, Schilling O, Don W S. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability [J]. J Comput Phys, 2007, 221: 805-836.
[23]
Schilling O, Latini M. High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: Dynamics, dependence on initial conditions, and comparisons to experimental data [J]. Acta Mathematica Scientia, 2010, 30B(2): 595-620.
[24]
Zhang S. Adaptive mesh refinement and visiometrics in accelerated inhomogeneous flows [D]. New Jersey: The State University of New Jersey, 2004.
[25]
Nourgaliev R R, Dinh T N, Theofanous T G. Adaptive characteristics-based matching for compressible multifluid dynamics [J]. J Comput Phys, 2006, 213(2): 500-529.
[26]
Wang T, Bai J S, Li P, et al. The numerical study of shock-induced hydrodynamic instability and mixing [J]. Chin Phys B, 2009, 18(3): 1127-1135.
[27]
Bai J S, Wang T, Zou L Y, et al. Numerical simulation for shock tube and jelly interface instability experiments [J]. Chinese Journal of Applied Mechanics, 2009, 26(3): 418-425. (in Chinese)