全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

我国动高压物理应用于地球科学的研究进展

DOI: 10.11858/gywlxb.2013.02.003, PP. 168-187

Keywords: 动高压,地幔,地核,物质组成和性质,地外物体撞击效应与对策,进展与评述

Full-Text   Cite this paper   Add to My Lib

Abstract:

20世纪80年代末,经福谦院士开创了我国动高压物理在地球科学和空间科学中的应用研究这两大动高压研究的新领域(“开天”、“辟地”),并领衔我国迄今唯一的地球深部物质科学重大研究项目——地球内部几个重要界面物质的高温高压物性研究,指导了我国超高速碰撞与空间碎片防护的研究。系统介绍了在经福谦院士指导下,我国应用冲击波技术对下地幔矿物(Mg,Fe)SiO3钙钛矿和MgO-FeO体系的高压相变和高压状态方程、铁的高压熔化线、外地核中轻元素的限定、地外物体撞击地球等几个热点问题研究取得的进展。谨以此文缅怀经福谦院士辞世一周年。

References

[1]  Dziewonski A M, Anderson D L. Preliminary reference Earth model [J]. Phys Earth Planet Inter, 1981, 25: 297-356.
[2]  Trunin R F, Gonshakova V I, Simakov G V, et al. A study of rock under the high pressures and temperatures created by shock compression [J]. Lzv Acad Sci USSR Phys Solid Earth(Eng Trans), 1965, 8: 579-586.
[3]  McQueen R G, Marsh S P, Fritz J N. Hugoniot equation of state of twelve rocks [J]. J Geophys Res, 1967, 72(20): 4999-5036.
[4]  Watt J R, Ahrens T J. Shock wave equation of state of enstatite [J]. J Geophys Res, 1986, 91(B7): 7495-7503.
[5]  Gong Z Z, Fei Y W, Dai F, et al. Equation of state and phase stability of mantle perovskite up to 140 GPa shock pressure and its geophysical implications [J]. Geophys Res Lett, 2004, 31(4): L04614.
[6]  Yang J K, Gong Z Z, Deng L W, et al. Equation of state and phase transition of (Mg0. 92, Fe0. 08)SiO3 enstatite under shock compression and its geophysical implications [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 45-54. (in Chinese)
[7]  杨金科, 龚自正, 邓力维, 等. 顽火辉石(Mg0. 92, Fe0. 08)SiO3的冲击相变和高压状态方程及其地球物理意义 [J]. 高压物理学报, 2007, 21(1): 45-54.
[8]  Akins J A, Luo S N, Asimow P D, et al. Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth's lowermost mantle [J]. Geophys Res Lett, 2004, 31(14): L14612.
[9]  Zhang L, Gong Z Z, Liu H, et al. Stability of (Mg, Fe)SiO3-perovskite at lower mantle pressure and temperature conditions [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 170-176. (in Chinese)
[10]  张莉, 龚自正, 刘红, 等. 下地幔温压下(Mg, Fe)SiO3钙钛矿的相稳定性--对冲击回收样品的微观分析 [J]. 高压物理学报, 2004, 18(2): 170-176.
[11]  Zhang L. Stability and thermal equation of state of (Mg, Fe)SiO3-perovskite at lower mantle conditions [D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese)
[12]  张莉. 下地幔温压条件下(Mg, Fe)SiO3钙钛矿的相稳定性及热状态方程 [D]. 成都: 西南交通大学, 2004.
[13]  Zhang L, Gong Z Z, Fei Y W. Synthesis of large bulk MgSiO3 perovskite and (Mg, Fe)O ferropericlase at high-pressure and high-temperature [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 375-381. (in Chinese)
[14]  张莉, 龚自正, 费英伟. 大块钙钛矿MgSiO3和镁方铁矿(Mg, Fe)O的高压合成 [J]. 高压物理学报, 2006, 20(4): 375-381.
[15]  Deng L W, Gong Z Z, Fei Y W. Direct shock wave loading of MgSiO3 perovskite to lower mantle conditions and its equation of state [J]. Phys Earth Planet Inter, 2008, 170(3/4): 210-214.
[16]  Deng L W. Equation of state of MgSiO3 perovskite at lower mantle condition and Fe-S-C melting behaviour research with related geophysics implications [D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
[17]  邓力维. MgSiO3钙钛矿高温高压状态方程、Fe-S-C熔化研究及相关地学意义 [D]. 成都: 西南交通大学, 2008.
[18]  Anderson O L, Duba A. Experimental melting curve of iron revisited [J]. J Geophys Res, 1997, 102(B10): 22659-22669.
[19]  Yoo C S, Akella J, Campbell A J, et al. Phase diagram of iron by in-situ X-ray diffraction: Implications for earth's core [J]. Science, 1995, 270(5241): 1473-1475.
[20]  Shen G, Lazor P, Saxena S K. Melting of wustite and iron up to pressures of 600 kbar [J]. Phys Chem Miner, 1993, 20(2): 91-96.
[21]  Boehler R. Temperature in the earth's core from melting-point measurements of iron at high static pressures [J]. Nature, 1993, 363(6429): 534-536.
[22]  Saxena S K, Shen G, Lazor P. Temperature in earth's core based on melting and phase transition experiments on iron [J]. Science, 1994, 264(5157): 405-407.
[23]  Li X J. The high pressure melting curve of iron [D]. Mianyang: China Academy of Engineering Physics, 2000. (in Chinese)
[24]  李西军. 铁的高压熔化线 [D]. 绵阳: 中国工程物理研究院, 2000.
[25]  Li X J, Gong Z Z, Liu F S, et al. A problem in measurements of high pressure melting curve of iron: Influence of melting mechanism on the melting temperature [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 221-225. (in Chinese)
[26]  李西军, 龚自正, 刘福生, 等. 铁高压熔化线的测量--熔化机理的影响 [J]. 高压物理学报, 2001, 15(3): 221-225.
[27]  Li X J, Gong Z Z, Jing F Q, et al. Sound velocities in porous iron shocked to 170 GPa and the implications for shocked melting [J]. Chin Phys Lett, 2001, 18(12): 1632-1634.
[28]  Gong Z Z, Li X J, Jing F Q. The possible composition and thermal structure of the Earth's lower mantle and core [J]. AIP Conf Proc, 2002, 620: 1401-1405.
[29]  Chen G Q, Ahrens T J. High pressure melting of iron: New experiments and calculations [J]. Phil Trans R Soc Lond A, 1996, 354(1711): 1251-1263.
[30]  Luo S N, Ahrens T J. Shock-induced superheating and melting curves of geophysically important minerals [J]. Phys Earth Planet Inter, 2004, 143: 369-386.
[31]  Lu K, Li Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal [J]. Phys Rev Lett, 1998, 80(20): 4470-4477.
[32]  Huang H J. Grüneisen parameter of iron under high pressure and temperature [D]. Shenyang: Liaoning University, 2002. (in Chinese)
[33]  黄海军. 高温高压下铁的Grüeisen参数 [D]. 沈阳: 辽宁大学, 2002.
[34]  Huang H J. Melting behavior of Fe at high pressure and the constraints on the light element of the Earth's outer core [D]. Mianyang: China Academy of Engineering Physics, 2005. (in Chinese)
[35]  黄海军. 高压下铁的熔化曲线及外地核候选组分的约束性研究 [D]. 绵阳: 中国工程物理研究院, 2005.
[36]  Stevenson D J. Models of the Earth's core [J]. Science, 1981, 241(4521): 611-619.
[37]  Alfè D, Gillan M J, Price G D. Composition and temperature of the Earth's core constrained by combing ab initio calculation and seismic data [J]. Earth Planet Sci Lett, 2002, 195(1/2): 91-98.
[38]  Allègre C J, Poirier J-P, Humles E, et al. The chemical composition of the Earth [J]. Earth Planet Sci Lett, 1995, 134(3/4): 515-526.
[39]  Fei Y W, Mao H K. In situ determination of the NiAs phase of FeO at high pressure and temperature [J]. Science, 1994, 266(5191): 1678-1680.
[40]  Lin J F, Heinz D L, Campbell A J, et al. Iron-silicon alloy in Earth's core? [J]. Science, 2002, 295(5553): 313-315.
[41]  Wood B J. Carbon in the core [J]. Earth Planet Sci Lett, 1993, 117(3/4): 593-607.
[42]  Badding J V, Hemley R J, Mao H K. High-pressure chemistry of hydrogen in metals: In situ study of iron hydrogen [J]. Science, 1991, 253(5018): 421-424.
[43]  Huang H J, Hu X J, Jing F Q, et al. Melting behavior of Fe-O-S at high pressure: A discussion on the melting depression induced by O and S [J]. J Geophys Res, 2010, 115(B5): B05207.
[44]  Huang H J, Fei Y W, Cai L C, et al. Evidence for an oxygen-depleted liquid outer core of the Earth [J]. Nature, 2011, 479(7374): 513-516.
[45]  Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space. Chelyabinsk Event 15 Feb 2013: Initial preliminary analysis [R/OL]. Austria: The United Nation Office at Vienna, 2013. http: //www. unoosa. org/oosa/en/COPUOS/stsc/2013/presentations. html.
[46]  di Martino M, Farinella P, Longo G. Foreword of the Tunguska issue [J]. Planet Space Sci, 1998, 46(2/3): 125.
[47]  Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous Tertiary extinctions [J]. Science, 1980, 208(4448): 1095-1108.
[48]  O'Keffe J D, Ahrens T J. Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth [J]. Nature, 1989, 338: 247-249.
[49]  Lange M A, Ahrens T J. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres [J]. Earth Planet Sci Lett, 1986, 77(3/4): 409-418.
[50]  Yang W B, Ahrens T J. Shock vaporization of anhydrite and global effects of the K/T bolide [J]. Earth Planetary Sci Lett, 1998, 156: 125-140.
[51]  Tyburczy J A, Duffy T S, Ahrens T J, et al. Shock wave equation of state of serpentine to 150 GPa: Implications for the occurance of water in the Earth's lower mantle [J]. J Geophys Res, 1991, 96(B11): 180110-18027.
[52]  Gong Z Z, Xie H S, Jing F Q, et al. Phase diagram of halloysite under high pressure and temperature and its geophysical implications [J]. Chinese Journal of High Pressure Physics, 1999, 12(2): 103-106. (in Chinese)
[53]  龚自正, 谢鸿森, 经福谦, 等. 高岭石的高温高压相图及地学意义 [J]. 高压物理学报, 1999, 12(2): 103-106.
[54]  Gong Z Z, Jing F Q, Xie H S. Resent advances on the application of shock wave physics to study of solid earth science in China [J]. Progress in Natural Science, 2000, 14(9): 783-791. (in Chinese)
[55]  龚自正, 经福谦, 谢鸿森. 我国冲击波物理应用于固体地球科学研究的若干进展 [J]. 自然科学进展, 2000, 14(9): 783-791.
[56]  He L, Gong Z Z, Jing F Q. A strength softening phase transition observed in shocked (Mg, Fe)SiO3 perovskite at about 83 GPa [J]. Chin Phys Lett, 2008, 25(1): 332-335.
[57]  Yang J K. Sound velocity of (Mg, Fe)SiO3-perovskite at high pressure and its stability and geophysical implications [D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
[58]  杨金科. (Mg, Fe)SiO3钙钛矿的高压声速和相稳定性及地球物理意义 [D]. 成都: 西南交通大学, 2008.
[59]  Flesch L M, Li B S, Liebermann R C. Sound velocities of polycrystalline MgSiO3-orthopyroxene to 10 GPa at room temperature [J]. Am Miner, 1998, 83: 444-450.
[60]  Kung J, Li B S, Uchida T, et al. In situ measurements of sound velocities and densities across the orthopyroxene→high-pressure clinopyroxene transition in MgSiO3 at high pressure [J]. Phys Earth Planet Inter, 2004, 147(1): 27-44.
[61]  Li B S, Zhang J Z. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle [J]. Phys Earth Planet Inter, 2005, 151(1/2): 143-154.
[62]  Sinogeikin S V, Zhang J Z, Bass J D. Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy [J]. Geophys Res Lett, 2004, 31(6): L06620.
[63]  Tsuchiya T, Tsuchiya J, Umemoto K, et al. Elasticity of post-perovskite MgSiO3 [J]. Geophys Res Lett, 2004, 31(14): L14603.
[64]  Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer [J]. Nature, 2004, 430: 445-448.
[65]  Shim S H, Duffy T S, Shen G, et al. Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary [J]. Geophys Res Lett, 2004, 31: L10603.
[66]  Badro J, Rueff J P, Vanko G, et al. Electronic transitions in perovskite: Possible noconvecting layers in the lower mantle [J]. Science, 2004, 305: 383-386.
[67]  Fiquet G, Andrault D, Dewaele A, et al. p-V-T equation of state of MgSiO3 perovskite [J]. Phys Earth Planet Inter, 1998, 105(1/2): 21-31.
[68]  Fiquet G, Dewaele A, Andrault D, et al. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions [J]. Geophys Res Lett, 2000, 27(1): 21-24.
[69]  Saxena S K, Dubrovinsk Y L S, Tutti F, et al. Equation of state of MgSiO3 with perovskite structure based on experimental measurement [J]. Am Mineral, 1999, 84(3): 226-232.
[70]  Gong Z Z, Xie H S, Fei Y W, et al. A review of recent advances on the minerals of the (Earth's) lower mantle [J]. Earth Science Frontiers, 2005, 12(1): 3-22. (in Chinese)
[71]  龚自正, 谢鸿森, 费英伟, 等. 下地幔矿物研究及其进展 [J]. 地学前缘, 2005, 12(1): 3-22.
[72]  Deng L W, Zhao J J, Ji G F, et al. First-principles study of orthorhombic perovskites MgSiO3 up to 120 GPa and its geophysical implications [J]. Chin Phys Lett, 2006, 23(8): 2334-2337.
[73]  Liu H, Du J G, Zhao J J, et al. Application of first-principles simulations to study of seismological geology and high pressure minerals [C]//Du J G, Xie H S. From Atom to the Earth-Progress in the Frontier of High Pressure Geosciences. Beijing: Seismological Press, 2007: 198-208. (in Chinese)
[74]  刘红, 杜建国, 赵纪军, 等. 第一性原理在地震地质和高压矿物研究中的应用 [C]//杜建国, 谢鸿森. 从原子到地球--高压地球科学研究进展. 北京: 地震出版社, 2007: 198-208.
[75]  Wu D, Zhao J J, Ji G F, et al. First-principles simulations of thermoelastic properties of MgSiO3-perovskiite at high temperature and high pressure [J]. Journal of Atomic and Molecular, 2009, 26(6): 1123-1129. (in Chinese)
[76]  吴迪, 赵纪军, 姬广富, 等. MgSiO3钙钛矿高温高压特性的第一性原理研究 [J]. 原子与分子物理学报, 2009, 26(6): 1123-1129.
[77]  Deng L W, Zhao J J, Liu H, et al. Pressure-related phase stability of MgSiO3 and (Mg0. 75, Fe0. 25)SiO3 at lower mantle condition [J]. Int J Mod Phys B, 2009, 23(16): 3323-3329.
[78]  Gong Z Z, Yu H, Deng L W, et al. Thermal pressure and thermal equation of state for solids at high pressure and temperature [C]// Du J G, He D W, Gao C X, et al. Experimental and Theoretical studies of Mineral and Rock at High Pressure and Temperature. Beijing: Seismological Press, 2011: 116-150. (in Chinese)
[79]  龚自正, 于慧, 邓力维, 等. 高温高压下固体的热压和热状态方程研究 [C]// 杜建国, 贺端威, 高春晓, 等. 矿物岩石高温高压实验与理论研究. 北京: 地震出版社, 2011: 116-150.
[80]  Zhang L. High pressure and high temperature study in the MgO-FeO and Fe-Ni-S systems and their geophysical implications [D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
[81]  张莉. MgO-FeO和Fe-Ni-S体系的高温高压研究及其地球物理意义 [D]. 成都: 西南交通大学, 2006.
[82]  Zhang L, Gong Z Z, Fei Y W. Shock compression and phase transitions of magnesiowüstite (Mg, Fe)O up to the Earth's lowermost mantle conditions [J]. Chin Phys Lett, 2006, 23(11): 3049-3051.
[83]  Zhang L, Gong Z Z, Fei Y W. Shock-induced phase transitions in the MgO-FeO system to 200 GPa [J]. J Phys Chem Solids, 2008, 69(9): 2344-2348.
[84]  Duffy T S, Hemley R J, Mao H K. Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa [J]. Phys Rev Lett, 1995, 74(8): 1371-1374.
[85]  Marsh S P. LASL Shock Hugoniot Data [M]. Berkeley: University of California Press, 1980: 658.
[86]  Vassiliou M S, Ahrens T J. Hugoniot equation of state of periclase to 200 GPa [J]. Geophys Res Lett, 1981, 8(7): 729-732.
[87]  Duffy T S, Ahrens T J. Compressional sound velocity, equation of state, and constitutive response of shock-compressed magnesium oxide [J]. J Geophys Res, 1995, 100(B1): 529-542.
[88]  Cohen R E, Gong Z. Melting and melt structure of MgO at high pressures [J]. Phys Rev B, 1994, 50(17): 12301-12311.
[89]  Vocadlo L, Price G D. The melting of MgO-Computer calculations via molecular dynamics [J]. Phys Chem Miner, 1996, 23(1): 42-49.
[90]  Cohen R E, Weitz J S. The melting curve and premelting of MgO [C]//Manghnani M H, Yagi T. Properties of Earth and Planetary Materials at High Pressure and Temperature. Washington DC: American Geophysical Union, 1998: 185-196.
[91]  AlfeD. Melting curve of MgO from first-principles simulations [J]. Phys Rev Lett, 2005, 94(23): 235701.
[92]  Belonoshko A B, Dubrovinsky L S. Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: Two-phase simulation [J]. Am Mineral, 1996, 81(3/4): 303-316.
[93]  Strachan A, Cagin T, Goddard W A Ⅲ. Phase diagram of MgO from density-functional theory and molecular-dynamics simulations [J]. Phys Rev B, 1999, 60(22): 15084-15093.
[94]  Aguado A, Madden P A. New insights into the melting behavior of MgO from molecular dynamics simulations: The importance of premelting effects [J]. Phys Rev Lett, 2005, 94(6): 68501.
[95]  Karki B B, Wentzcovitch R M, de Gironcoli S, et al. High-pressure lattice dynamics and thermoelasticity of MgO [J]. Phys Rev B, 1999, 61(13): 8793-8800.
[96]  Fei Y W, Mao H K. In situ determination of the NiAs phase of FeO at high pressure and temperature [J]. Science, 1994, 266(5191): 1678.
[97]  Speziale S, Milner A, Lee V E, et al. Iron spin transition in Earth's mantle [J]. Proc Natl Acad Sci USA, 2005, 102(50): 17918-17922.
[98]  Lin J F, Struzhkin V V, Jacobsen S D, et al. Spin transition of iron in magnesiowüstite in the Earth's lower mantle [J]. Nature, 2005, 436: 377-380.
[99]  Badro J, Fiquet G, Guyot F, et al. Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity [J]. Science, 2003, 300(5620): 789-791.
[100]  Zhang L, Fei Y W. Melting behavior of (Mg, Fe)O solid solutions at high pressure [J]. Geophys Res Lett, 2008, 35(13): L13302.
[101]  Jephcoat A P, Ohson P. Is the inner core of the earth pure iron? [J]. Nature, 1987, 325: 332-335.
[102]  Jacobos J A. The Earth's Core [M]. 2nd ed. New York: Academic Press, 1987.
[103]  Williams Q, Jeanloz R, Bass J, et al. The melting curve of iron to 250 gigapascals: A constraint on the temperature at earth's center [J]. Sciense, 1987, 236: 181.
[104]  Brown J M, McQueen R G. Phase transition, Grüneisen parameter and elasticity for shocked iron between 77 GPa and 400 GPa [J]. J Geophys Res, 1986, 91(B7): 7485.
[105]  Yoo C S, Holmes N C, Ross M, et al. Shock temperature and melting of iron at Earth core conditions [J]. Phys Rev Lett, 1993, 70(25): 3931-3934.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133