Dziewonski A M, Anderson D L. Preliminary reference Earth model [J]. Phys Earth Planet Inter, 1981, 25: 297-356.
[2]
Trunin R F, Gonshakova V I, Simakov G V, et al. A study of rock under the high pressures and temperatures created by shock compression [J]. Lzv Acad Sci USSR Phys Solid Earth(Eng Trans), 1965, 8: 579-586.
[3]
McQueen R G, Marsh S P, Fritz J N. Hugoniot equation of state of twelve rocks [J]. J Geophys Res, 1967, 72(20): 4999-5036.
[4]
Watt J R, Ahrens T J. Shock wave equation of state of enstatite [J]. J Geophys Res, 1986, 91(B7): 7495-7503.
[5]
Gong Z Z, Fei Y W, Dai F, et al. Equation of state and phase stability of mantle perovskite up to 140 GPa shock pressure and its geophysical implications [J]. Geophys Res Lett, 2004, 31(4): L04614.
[6]
Yang J K, Gong Z Z, Deng L W, et al. Equation of state and phase transition of (Mg0. 92, Fe0. 08)SiO3 enstatite under shock compression and its geophysical implications [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 45-54. (in Chinese)
Akins J A, Luo S N, Asimow P D, et al. Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth's lowermost mantle [J]. Geophys Res Lett, 2004, 31(14): L14612.
[9]
Zhang L, Gong Z Z, Liu H, et al. Stability of (Mg, Fe)SiO3-perovskite at lower mantle pressure and temperature conditions [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 170-176. (in Chinese)
Zhang L. Stability and thermal equation of state of (Mg, Fe)SiO3-perovskite at lower mantle conditions [D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese)
Zhang L, Gong Z Z, Fei Y W. Synthesis of large bulk MgSiO3 perovskite and (Mg, Fe)O ferropericlase at high-pressure and high-temperature [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 375-381. (in Chinese)
Deng L W, Gong Z Z, Fei Y W. Direct shock wave loading of MgSiO3 perovskite to lower mantle conditions and its equation of state [J]. Phys Earth Planet Inter, 2008, 170(3/4): 210-214.
[16]
Deng L W. Equation of state of MgSiO3 perovskite at lower mantle condition and Fe-S-C melting behaviour research with related geophysics implications [D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
Anderson O L, Duba A. Experimental melting curve of iron revisited [J]. J Geophys Res, 1997, 102(B10): 22659-22669.
[19]
Yoo C S, Akella J, Campbell A J, et al. Phase diagram of iron by in-situ X-ray diffraction: Implications for earth's core [J]. Science, 1995, 270(5241): 1473-1475.
[20]
Shen G, Lazor P, Saxena S K. Melting of wustite and iron up to pressures of 600 kbar [J]. Phys Chem Miner, 1993, 20(2): 91-96.
[21]
Boehler R. Temperature in the earth's core from melting-point measurements of iron at high static pressures [J]. Nature, 1993, 363(6429): 534-536.
[22]
Saxena S K, Shen G, Lazor P. Temperature in earth's core based on melting and phase transition experiments on iron [J]. Science, 1994, 264(5157): 405-407.
[23]
Li X J. The high pressure melting curve of iron [D]. Mianyang: China Academy of Engineering Physics, 2000. (in Chinese)
[24]
李西军. 铁的高压熔化线 [D]. 绵阳: 中国工程物理研究院, 2000.
[25]
Li X J, Gong Z Z, Liu F S, et al. A problem in measurements of high pressure melting curve of iron: Influence of melting mechanism on the melting temperature [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 221-225. (in Chinese)
Li X J, Gong Z Z, Jing F Q, et al. Sound velocities in porous iron shocked to 170 GPa and the implications for shocked melting [J]. Chin Phys Lett, 2001, 18(12): 1632-1634.
[28]
Gong Z Z, Li X J, Jing F Q. The possible composition and thermal structure of the Earth's lower mantle and core [J]. AIP Conf Proc, 2002, 620: 1401-1405.
[29]
Chen G Q, Ahrens T J. High pressure melting of iron: New experiments and calculations [J]. Phil Trans R Soc Lond A, 1996, 354(1711): 1251-1263.
[30]
Luo S N, Ahrens T J. Shock-induced superheating and melting curves of geophysically important minerals [J]. Phys Earth Planet Inter, 2004, 143: 369-386.
[31]
Lu K, Li Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal [J]. Phys Rev Lett, 1998, 80(20): 4470-4477.
[32]
Huang H J. Grüneisen parameter of iron under high pressure and temperature [D]. Shenyang: Liaoning University, 2002. (in Chinese)
[33]
黄海军. 高温高压下铁的Grüeisen参数 [D]. 沈阳: 辽宁大学, 2002.
[34]
Huang H J. Melting behavior of Fe at high pressure and the constraints on the light element of the Earth's outer core [D]. Mianyang: China Academy of Engineering Physics, 2005. (in Chinese)
Stevenson D J. Models of the Earth's core [J]. Science, 1981, 241(4521): 611-619.
[37]
Alfè D, Gillan M J, Price G D. Composition and temperature of the Earth's core constrained by combing ab initio calculation and seismic data [J]. Earth Planet Sci Lett, 2002, 195(1/2): 91-98.
[38]
Allègre C J, Poirier J-P, Humles E, et al. The chemical composition of the Earth [J]. Earth Planet Sci Lett, 1995, 134(3/4): 515-526.
[39]
Fei Y W, Mao H K. In situ determination of the NiAs phase of FeO at high pressure and temperature [J]. Science, 1994, 266(5191): 1678-1680.
[40]
Lin J F, Heinz D L, Campbell A J, et al. Iron-silicon alloy in Earth's core? [J]. Science, 2002, 295(5553): 313-315.
[41]
Wood B J. Carbon in the core [J]. Earth Planet Sci Lett, 1993, 117(3/4): 593-607.
[42]
Badding J V, Hemley R J, Mao H K. High-pressure chemistry of hydrogen in metals: In situ study of iron hydrogen [J]. Science, 1991, 253(5018): 421-424.
[43]
Huang H J, Hu X J, Jing F Q, et al. Melting behavior of Fe-O-S at high pressure: A discussion on the melting depression induced by O and S [J]. J Geophys Res, 2010, 115(B5): B05207.
[44]
Huang H J, Fei Y W, Cai L C, et al. Evidence for an oxygen-depleted liquid outer core of the Earth [J]. Nature, 2011, 479(7374): 513-516.
[45]
Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space. Chelyabinsk Event 15 Feb 2013: Initial preliminary analysis [R/OL]. Austria: The United Nation Office at Vienna, 2013. http: //www. unoosa. org/oosa/en/COPUOS/stsc/2013/presentations. html.
[46]
di Martino M, Farinella P, Longo G. Foreword of the Tunguska issue [J]. Planet Space Sci, 1998, 46(2/3): 125.
[47]
Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous Tertiary extinctions [J]. Science, 1980, 208(4448): 1095-1108.
[48]
O'Keffe J D, Ahrens T J. Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth [J]. Nature, 1989, 338: 247-249.
[49]
Lange M A, Ahrens T J. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres [J]. Earth Planet Sci Lett, 1986, 77(3/4): 409-418.
[50]
Yang W B, Ahrens T J. Shock vaporization of anhydrite and global effects of the K/T bolide [J]. Earth Planetary Sci Lett, 1998, 156: 125-140.
[51]
Tyburczy J A, Duffy T S, Ahrens T J, et al. Shock wave equation of state of serpentine to 150 GPa: Implications for the occurance of water in the Earth's lower mantle [J]. J Geophys Res, 1991, 96(B11): 180110-18027.
[52]
Gong Z Z, Xie H S, Jing F Q, et al. Phase diagram of halloysite under high pressure and temperature and its geophysical implications [J]. Chinese Journal of High Pressure Physics, 1999, 12(2): 103-106. (in Chinese)
Gong Z Z, Jing F Q, Xie H S. Resent advances on the application of shock wave physics to study of solid earth science in China [J]. Progress in Natural Science, 2000, 14(9): 783-791. (in Chinese)
He L, Gong Z Z, Jing F Q. A strength softening phase transition observed in shocked (Mg, Fe)SiO3 perovskite at about 83 GPa [J]. Chin Phys Lett, 2008, 25(1): 332-335.
[57]
Yang J K. Sound velocity of (Mg, Fe)SiO3-perovskite at high pressure and its stability and geophysical implications [D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
Flesch L M, Li B S, Liebermann R C. Sound velocities of polycrystalline MgSiO3-orthopyroxene to 10 GPa at room temperature [J]. Am Miner, 1998, 83: 444-450.
[60]
Kung J, Li B S, Uchida T, et al. In situ measurements of sound velocities and densities across the orthopyroxene→high-pressure clinopyroxene transition in MgSiO3 at high pressure [J]. Phys Earth Planet Inter, 2004, 147(1): 27-44.
[61]
Li B S, Zhang J Z. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle [J]. Phys Earth Planet Inter, 2005, 151(1/2): 143-154.
[62]
Sinogeikin S V, Zhang J Z, Bass J D. Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy [J]. Geophys Res Lett, 2004, 31(6): L06620.
[63]
Tsuchiya T, Tsuchiya J, Umemoto K, et al. Elasticity of post-perovskite MgSiO3 [J]. Geophys Res Lett, 2004, 31(14): L14603.
[64]
Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer [J]. Nature, 2004, 430: 445-448.
[65]
Shim S H, Duffy T S, Shen G, et al. Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary [J]. Geophys Res Lett, 2004, 31: L10603.
[66]
Badro J, Rueff J P, Vanko G, et al. Electronic transitions in perovskite: Possible noconvecting layers in the lower mantle [J]. Science, 2004, 305: 383-386.
[67]
Fiquet G, Andrault D, Dewaele A, et al. p-V-T equation of state of MgSiO3 perovskite [J]. Phys Earth Planet Inter, 1998, 105(1/2): 21-31.
[68]
Fiquet G, Dewaele A, Andrault D, et al. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions [J]. Geophys Res Lett, 2000, 27(1): 21-24.
[69]
Saxena S K, Dubrovinsk Y L S, Tutti F, et al. Equation of state of MgSiO3 with perovskite structure based on experimental measurement [J]. Am Mineral, 1999, 84(3): 226-232.
[70]
Gong Z Z, Xie H S, Fei Y W, et al. A review of recent advances on the minerals of the (Earth's) lower mantle [J]. Earth Science Frontiers, 2005, 12(1): 3-22. (in Chinese)
Deng L W, Zhao J J, Ji G F, et al. First-principles study of orthorhombic perovskites MgSiO3 up to 120 GPa and its geophysical implications [J]. Chin Phys Lett, 2006, 23(8): 2334-2337.
[73]
Liu H, Du J G, Zhao J J, et al. Application of first-principles simulations to study of seismological geology and high pressure minerals [C]//Du J G, Xie H S. From Atom to the Earth-Progress in the Frontier of High Pressure Geosciences. Beijing: Seismological Press, 2007: 198-208. (in Chinese)
Wu D, Zhao J J, Ji G F, et al. First-principles simulations of thermoelastic properties of MgSiO3-perovskiite at high temperature and high pressure [J]. Journal of Atomic and Molecular, 2009, 26(6): 1123-1129. (in Chinese)
Deng L W, Zhao J J, Liu H, et al. Pressure-related phase stability of MgSiO3 and (Mg0. 75, Fe0. 25)SiO3 at lower mantle condition [J]. Int J Mod Phys B, 2009, 23(16): 3323-3329.
[78]
Gong Z Z, Yu H, Deng L W, et al. Thermal pressure and thermal equation of state for solids at high pressure and temperature [C]// Du J G, He D W, Gao C X, et al. Experimental and Theoretical studies of Mineral and Rock at High Pressure and Temperature. Beijing: Seismological Press, 2011: 116-150. (in Chinese)
Zhang L. High pressure and high temperature study in the MgO-FeO and Fe-Ni-S systems and their geophysical implications [D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
Zhang L, Gong Z Z, Fei Y W. Shock compression and phase transitions of magnesiowüstite (Mg, Fe)O up to the Earth's lowermost mantle conditions [J]. Chin Phys Lett, 2006, 23(11): 3049-3051.
[83]
Zhang L, Gong Z Z, Fei Y W. Shock-induced phase transitions in the MgO-FeO system to 200 GPa [J]. J Phys Chem Solids, 2008, 69(9): 2344-2348.
[84]
Duffy T S, Hemley R J, Mao H K. Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa [J]. Phys Rev Lett, 1995, 74(8): 1371-1374.
[85]
Marsh S P. LASL Shock Hugoniot Data [M]. Berkeley: University of California Press, 1980: 658.
[86]
Vassiliou M S, Ahrens T J. Hugoniot equation of state of periclase to 200 GPa [J]. Geophys Res Lett, 1981, 8(7): 729-732.
[87]
Duffy T S, Ahrens T J. Compressional sound velocity, equation of state, and constitutive response of shock-compressed magnesium oxide [J]. J Geophys Res, 1995, 100(B1): 529-542.
[88]
Cohen R E, Gong Z. Melting and melt structure of MgO at high pressures [J]. Phys Rev B, 1994, 50(17): 12301-12311.
[89]
Vocadlo L, Price G D. The melting of MgO-Computer calculations via molecular dynamics [J]. Phys Chem Miner, 1996, 23(1): 42-49.
[90]
Cohen R E, Weitz J S. The melting curve and premelting of MgO [C]//Manghnani M H, Yagi T. Properties of Earth and Planetary Materials at High Pressure and Temperature. Washington DC: American Geophysical Union, 1998: 185-196.
[91]
AlfeD. Melting curve of MgO from first-principles simulations [J]. Phys Rev Lett, 2005, 94(23): 235701.
[92]
Belonoshko A B, Dubrovinsky L S. Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: Two-phase simulation [J]. Am Mineral, 1996, 81(3/4): 303-316.
[93]
Strachan A, Cagin T, Goddard W A Ⅲ. Phase diagram of MgO from density-functional theory and molecular-dynamics simulations [J]. Phys Rev B, 1999, 60(22): 15084-15093.
[94]
Aguado A, Madden P A. New insights into the melting behavior of MgO from molecular dynamics simulations: The importance of premelting effects [J]. Phys Rev Lett, 2005, 94(6): 68501.
[95]
Karki B B, Wentzcovitch R M, de Gironcoli S, et al. High-pressure lattice dynamics and thermoelasticity of MgO [J]. Phys Rev B, 1999, 61(13): 8793-8800.
[96]
Fei Y W, Mao H K. In situ determination of the NiAs phase of FeO at high pressure and temperature [J]. Science, 1994, 266(5191): 1678.
[97]
Speziale S, Milner A, Lee V E, et al. Iron spin transition in Earth's mantle [J]. Proc Natl Acad Sci USA, 2005, 102(50): 17918-17922.
[98]
Lin J F, Struzhkin V V, Jacobsen S D, et al. Spin transition of iron in magnesiowüstite in the Earth's lower mantle [J]. Nature, 2005, 436: 377-380.
[99]
Badro J, Fiquet G, Guyot F, et al. Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity [J]. Science, 2003, 300(5620): 789-791.
[100]
Zhang L, Fei Y W. Melting behavior of (Mg, Fe)O solid solutions at high pressure [J]. Geophys Res Lett, 2008, 35(13): L13302.
[101]
Jephcoat A P, Ohson P. Is the inner core of the earth pure iron? [J]. Nature, 1987, 325: 332-335.
[102]
Jacobos J A. The Earth's Core [M]. 2nd ed. New York: Academic Press, 1987.
[103]
Williams Q, Jeanloz R, Bass J, et al. The melting curve of iron to 250 gigapascals: A constraint on the temperature at earth's center [J]. Sciense, 1987, 236: 181.
[104]
Brown J M, McQueen R G. Phase transition, Grüneisen parameter and elasticity for shocked iron between 77 GPa and 400 GPa [J]. J Geophys Res, 1986, 91(B7): 7485.
[105]
Yoo C S, Holmes N C, Ross M, et al. Shock temperature and melting of iron at Earth core conditions [J]. Phys Rev Lett, 1993, 70(25): 3931-3934.