Hvelplund P, Andersen L H, Haugen H K, et al. Dynamical fragmentation of C60 ions [J]. Phys Rev Lett, 1992, 69(13): 1915-1918.
[2]
Sato K, Kako M, Suzuki M, et al. Synthesis of silylene-bridged endohedral metallofullerene Lu3N@Ih-C80 [J]. J Am Chem Soc, 2012, 134(38): 16033-16039.
[3]
Hachiya M, Nikawa H, Mizorogi N, et al. Exceptional chemical properties of Sc@C2v (9)-C82 probed with adamantylidene carbene [J]. J Am Chem Soc, 2012, 134(37): 15550-15555.
[4]
Wan Z M, Christian J F, Anderson S L. Ne++C60: Collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer [J]. J Chem Phys, 1992, 96(4): 3344-3346.
[5]
Ehlich R, Knospe O, Schmidt R. Molecular dynamics studies of inelastic scattering and fragmentation in collisions of C60 with rare-gas atoms [J]. J Phys B: At Mol Opt Phys, 1997, 30(4): 5429-5433.
[6]
Patchkovskii S, Thiel W. Radical impurity mechanisms for helium incorporation into buckminsterfullerene [J]. Helv Chim Acta, 1997, 80(2): 495-509.
[7]
Campbell E E B, Ehlich R, Heusler G, et al. Capture dynamics in collisions between fullerene ions and rare gas atoms [J]. Chem Phys, 1998, 239(1): 299-308.
[8]
Peng R F, Chu S J, Huang Y M, et al. Preparation of He@C60 and He2@C60 by an explosive method [J]. J Mater Chem, 2009, 19(22): 3602-3605.
[9]
Bil A, Morrison C A. Modifying the fullerene surface using endohedral noble gas atoms: Density functional theory based molecular dynamics study of C70O3 [J]. J Phys Chem A, 2012, 116(13): 3413-3419.
[10]
Weisman R B, Heymann D, Bachilo S M. Synthesis and characterization of the"missing"oxide of C60: [5, 6]-open C60O [J]. J Am Chem Soc, 2001, 123: 9720-9721.
[11]
Zhang H C, Peng R F, Jin B, et al. Study on the reaction of C60 under shock wave [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 351-356. (in Chinese)
Ohno K, Maruyama Y, Esfarjani K, et al. Ab initio molecular dynamics simulations for collision between C60 and alkali-metal ions: A possibility of Li@C60[J]. Phys Rev Lett, 1996, 76(19): 3590-3593.
[14]
Glotov A V, Campbell E E B. Inelastic, quasi-elastic and charge transfer scattering in C++60C60 collisions [J]. Chem Phys Lett, 2000, 327(1): 61-68.
[15]
Tang Z C, Ren B, Huang R B, et al. Collapsed deposition of accelerated C60 beam on solid surface: (Ⅰ) Confocal Raman microscopic studies [J]. Acta Physico-Chimica Sinica, 1997, 13(6): 481-483. (in Chinese)
Tang Z C, Cai X W, Shi C H, et al. Collapsed deposition of accelerated C60 beam on solid surface: (Ⅱ) STM studies [J]. Acta Physico-Chimica Sinica, 1997, 13(10): 950-953. (in Chinese)
Russo C J, Golovchenko J A. Atom-by-atom nucleation and growth of graphene nanopores [J]. PNAS, 2012, 109(16): 5953-5957.
[20]
Nakai Y, Majima T, Mizuno T, et al. C60 fragmentation in charge-changing collisions with slow Au+ ions [J]. Phys Rev A, 2011, 83(5): 053201-053206.
[21]
Kabir M, Mukherjee S, Saha-Dasgupta T. Substantial reduction of Stone-Wales activation barrier in fullerene [J]. Phys Rev B, 2011, 84(20): 205404-205410.
[22]
Cao B P, Peres T, Lifshitz C, et al. Kinetic energy release of C+70 and its endohedral cation N@C+70: Activation energy for N extrusion [J]. Chem Eur J, 2006, 12(8): 2213-2221.
[23]
VandeVondele J, Krack M, Mohamed F, et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J]. Comput Phys Commun, 2005, 167(2): 103-128.
[24]
Liu L M, Krack M, Michaelides A. Density oscillations in a nanoscale water film on salt: Insight from ab initio molecular dynamics [J]. J Am Chem Soc, 2008, 130(5): 8572-8573.
[25]
Liu L M, Krack M, Michaelides A. Interfacial water: A first principles molecular dynamics study of a nanoscale water film on salt [J]. J Chem Phys, 2009, 130(23): 234702-234713.
[26]
Strachan A, van Duin A, Chakraborty D, et al. Shock waves in high-energy materials: The initial chemical events in nitramine RDX [J]. Phys Rev Lett, 2003, 91(9): 098301-098304.
[27]
Dlott D D. Ultrafast spectroscopy of shock waves in molecular materials [J]. Annu Rev Phys Chem, 1999, 50(4): 251-278.
[28]
Jakowski J, Irle S, Morokuma K. Collision-induced fusion of two C60 fullerenes: Quantum chemical molecular dynamics simulations [J]. Phys Rev B, 2010, 82(12): 125443-125449.
[29]
Sohn W Y, Kim T W, Lee J S. Structure and energetics of C60O: A theoretical study [J]. J Phys Chem A, 2010, 114(4): 1939-1943.
[30]
Zhang J, Fuhrer T, Fu W, et al. Nanoscale Fullerene compression of an yttrium carbide cluster [J]. J Am Chem Soc, 2012, 134(20): 8487-8493.
[31]
Tachikawa H. Diffusion of the Li+ ion on C60: A DFT and molecular dynamics study [J]. J Phys Chem C, 2011, 115(42): 20406-20411.
[32]
Cao B P, Peres T, Cross R J, et al. Unimolecular dissociations of C+70 and its noble gas endohedral cations Ne@C+70 and Ar@C+70: Cage-binding energies for C2 Loss [J]. J Phys Chem A, 2005, 109(45): 10257-10263.
[33]
Korona T, Dodziuk H. Small molecules in C60 and C70: Which complexes could Be stabilized [J]. J Chem Theory Comput, 2011, 7(5): 1476-1483.
[34]
Wang L, Liu B, Li H, et al. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks [J]. Science, 2012, 337(6096): 825-828.
[35]
Murry R L, Strout D L, Odom G K, et al. Role of SP3 carbon and 7-membered rings in fullerene annealing and fragmentation [J]. Nature, 1993, 366: 665-667.