Zahariev F, Hooper J, Alavi S, et al. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations [J]. Phys Rev B, 2007, 75(14): 140101(R).
[2]
Alemany M M G, Martins J L. Density-functional study of nonmolecular phases of nitrogen: Metastable phase at low pressure [J]. Phys Rev B, 2003, 68: 024110(1)-024110(4).
[3]
Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
[4]
Wang X L, Tian F B, Wang L, et al. Predicted novel metallic metastable phases of polymeric nitrogen at high pressures [J]. New J Phys, 2013, 15: 013010.
[5]
Curtin D Y, Paul I C. Chemical consequences of the polar axis in organic solid-state chemistry [J]. Chem Rev, 1981, 81(6): 525-541.
[6]
Zhang H, Wang X M, Zhang K C, et al. Functional crystals: Search criteria and design principles [J]. J Solid State Chem, 2000, 152(1): 191-198.
[7]
Kenichi T, Kyoko S, Hiroshi F, et al. Modulated structure of solid iodine during its molecular dissociation under high pressure [J]. Nature, 2003, 423: 971-974.
[8]
Duan D F, Liu Y H, Ma Y M, et al. Ab initio studies of solid bromine under high pressure [J]. Phys Rev B, 2007, 76(10): 104113.
[9]
Dziubek K F, Katrusiak A. Polar symmetry in new high-pressure phases of chloroform and bromoform [J]. J Phys Chem B, 2008, 112(38): 12001-12009.
[10]
Liu D, Lei W W, Wang K, et al. Compression and Probing C-H…I hydrogen bonds of iodoform under high pressure by X-ray diffraction and raman scattering [J]. J Phys Chem B, 2009, 13(21): 7430-7434.
[11]
Wang K, Duan D F, Wang R, et al. Pressure-induced phase transition in hydrogen-bonded supramolecular adduct formed by cyanuric acid and melamine [J]. J Phys Chem B, 2009, 113(44): 14719-14724.
[12]
Wang L C, Tian F B, Feng W X, et al. Order-disorder phase transition and dissociation of hydrogen sulfide under high pressure: Ab initio molecular dynamics study [J]. J Chem Phys, 2010, 132(16): 164506.
[13]
Berski S, Ciunik Z, Drabent K, et al. Dominant role of C-Br…N halogen bond in molecular self-organization. Crystallographic and quantum-chemical study of schiff-base-containing triazoles [J]. J Phys Chem B, 2004, 108(33): 12327-12332.
[14]
Awwadi F F, Willett R D, Peterson K A, et al. The nature of halogen…halogen synthons: Crystallographic and theoretical studies [J]. Chemistry-Europ J, 2006, 12(35): 8952-8960.
[15]
Samoc A, Samoc M, Giermanska J, et al. Thermally stimulated depolarisation study of structural disorder in iodoform single crystals [J]. J Phys D: Appl Phys, 1985, 18(12): 2529.
[16]
Calvert J G, Pitts J N. Experimental methods in photochemistry [C]//Photochemistry. New York: John Wiley & Sons, Inc, 1966: 686-798.
[17]
Samoс A, Samoс M, Sworakowski J, et al. Photoconductivity of crystalline iodoform I [J]. Molecul Crystals Liquid Crys, 1981, 78(1): 1-13.
[18]
Bowden M E, Gainsford G J, Robinson W T. Room-temperature structure of ammonia borane [J]. Aust J Chem, 2007, 60(3): 149-153. [44] Yang J B, Lamsal J, Cai Q, et al. Structural evolution of ammonia borane for hydrogen storage [J]. Appl Phys Lett, 2008, 92(9): 091916 (1)-091916(3).
[19]
Hess N J, Schenter G K, Hartman M R, et al. Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340 K [J]. J Phys Chem A, 2009, 113(19): 5723-5735.
[20]
Klooster W T, Koetzle T F, Siegbahn P E M, et al. Study of the N-H…H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction [J]. J Am Chem Soc, 1999, 121(27): 6337-6343.
[21]
Filinchuk Y, Nevidomskyy A H, Chernyshov D, et al. High-pressure phase and transition phenomena in ammonia borane NH3BH3 from X-ray diffraction, Landau theory, and ab initio calculations [J]. Phys Rev B, 2009, 79(21): 214111.
[22]
Lin Y, Mao W L, Drozd V, et al. Raman spectroscopy study of ammonia borane at high pressure [J]. J Chem Phys, 2008, 129(23): 234509.
[23]
Suenram R D, Lovas F J. Microwave spectrum, torsional barrier, and structure of BH3NH3 [J]. J Chem Phys, 1983, 78(1): 167.
[24]
Parvanov V M, Schenter G K, Hess N J, et al. Materials for hydrogen storage: Structure and dynamics of borane ammonia complex [J]. Dalton Trans, 2008, 33: 4514-4522.
[25]
Hessa N J, Hartmanb M R, Brownc Craig M, et al. Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane [J]. Chem Phys Lett, 2008, 459: 85-88.
[26]
Penner G H, Chang Y C P, Hutzal J, et al. A deuterium NMR spectroscopic study of solid BH3NH3 [J]. Inorg Chem, 1999, 38(12): 2868-2873.
[27]
Gunaydin-Sen O, Achey R, Dalal N S, et al. High resolution 15N NMR of the 225 K phase transition of ammonia borane (NH3BH3): Mixed order-disorder and displacive behavior [J]. J Phys Chem B, 2007, 111(4): 677-681.
[28]
Wigner E, Huntington H B. On the possibility of a metallic modification of hydrogen [J]. J Chem Phys, 1935, 3(12): 764.
[29]
Wang X L, Tian F B, Wang L C, et al. Structural stability of polymeric nitrogen: A first-principles investigation [J]. J Chem Phys, 2010, 132(2): 024502.
[30]
Bao G, Duan D F, Zhou D W, et al. A new high-pressure polar phase of crystalline bromoform: A first-principles study [J]. J Phys Chem B, 2010, 114(44): 13933-13939.
[31]
Bao G, Duan D, Tian F, et al. Structural, electronic, and optical properties of crystalline iodoform under high pressure: A first-principles study [J]. J Chem Phys, 2011, 134(3): 034508.
[32]
Fan J, Bao K, Jin X L, et al. How to get superhard MnB2: A first-principles study [J]. J Mater Chem, 2012, 22(34): 17630-17635.
[33]
Wang L C, Bao K, Meng X, et al. Structural and dynamical properties of solid ammonia borane under high pressure [J]. J Chem Phys, 2011, 134(2): 024517.
[34]
Zeng Q F, He Z, San X J, et al. A new phase of solid iodine with different molecular covalent bonds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4999-5001.
[35]
Buzea C, Yamashita T. Review of the superconducting properties of MgB2 [J]. Supercond Sci Technol, 2001, 14(11): R115.
[36]
Takemura K, Minomura S, Shimomura O, et al. Observation of molecular dissociation of iodine at high pressure by X-ray diffraction [J]. Phys Rev Lett, 1980, 45(23): 1881-1884.
[37]
Fujii Y, Hase K, Ohishi Y, et al. Pressure-induced monatomic tetragonal phase of metallic iodine [J]. Solid State Commun, 1986, 59(2): 85-89.
[38]
Fujii Y, Hase K, Hamaya N, et al. Pressure-induced face-centered-cubic phase of monatomic metallic iodine [J]. Phys Rev Lett, 1987, 58(8): 796-799.
[39]
Hu J Z, Hemley J, Mao H K, et al. Optical, X-ray, and band-structure studies of iodine at pressures of several megabars [J]. Phys Rev B, 1994, 49(6): 3725-3733.
[40]
Kenichi T, Kyoko S, Hiroshi F, et al. Modulated structure of solid iodine during its molecular dissociation under high pressure [J]. Nature, 2003, 423: 971-974.
[41]
Kume T, Hiraoka T, Ohya Y, et al. High pressure Raman study of bromine and iodine: Soft phonon in the incommensurate phase [J]. Phys Rev Lett, 2005, 94(6): 065506.
[42]
Sakamoto H, Shirai M, Suzuki N. Pressure effects on electronic structure and electron-lattice interaction of cubic phase of solid iodine [J]. J Phys Soc Jpn 1995, 64: 3860-3870.
[43]
Sakamoto H, Oda T, Shirai M, et al. Application of Frozen-phonon method to lattice dynamics in FCC solid iodine [J]. J Phys Soc Jpn, 1996, 65: 489-495.
[44]
Maheswari S U, Nagara H, Kusakabe K, et al. Ab-initio calculations of lattice dynamics and superconductivity in FCC lithium and iodine and BCC tellurium [J]. J Phys Soc Jpn, 2005, 74(12): 3227-3235.
[45]
Shimizu K, Yamauchi T, Tamitani N, et al. The pressure-induced superconductivity of iodine [J]. J Supercond, 1994, 7(6): 921.
[46]
Duan D F, Jin X L, Ma Y M, et al. Effect of nonhydrostatic pressure on superconductivity of monatomic iodine: An ab initio study [J]. Phys Rev B, 2009, 79(6): 064518.
[47]
McMahan A K, LeSar R. Pressure dissociation of solid nitrogen under 1 Mbar [J]. Phys Rev Lett, 1985, 54(17): 1929-1932.
[48]
Eremets M I, Gavriliuk A G, Trojan I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Mater, 2004, 3: 558-563.
[49]
Zahariev F, Hu A, Hooper J, et al. Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation [J]. Phys Rev B, 2005, 72(21): 214108.
[50]
Ludwig S, Osheroff D D. Field-induced structural aging in glasses at ultralow temperatures [J]. Phys Rev Lett, 2003, 91(10): 105501.
[51]
Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
[52]
Oganov A R, Glass C W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications [J]. J Chem Phys, 2006, 124(24): 244704.