全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高孔隙率Al2O3微孔陶瓷压剪冲击动力学特性

DOI: 10.11858/gywlxb.2013.05.002, PP. 662-670

Keywords: 冲击动力学,压剪复合加载,动态剪切,孔隙介质,双重动态屈服模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于一级压剪轻气炮,对高孔隙率Al2O3微孔陶瓷(孔隙率47%~50%)进行冲击速度为68~201m/s、倾斜角为0~15°的平板撞击实验,研究了相关的动态压缩及剪切特性。结果表明,由于材料的气孔为直径小于5μm的微孔,其压缩过程是一个渐进的均匀发展的过程,并没有孔洞崩塌现象发生;其剪切行为表现出脆性材料的一般特性。基于Hoek-Brown准则和帽盖模型,建立了孔隙介质动态破坏模型和动态双重屈服面模型。结合压剪实验数据,对模型进行了初步分析,分析结果表明了此模型的适用性。

References

[1]  Gupta Y M. Measurement of compression and shear waves in an impact experiment: Role of gauge leads in particle-velocity measurement [J]. J Appl Phys, 1980, 51(3): 1835-1838.
[2]  Abou-Sayed A S, Clifton R J. Pressure-shear waves in fused silica [J]. J Appl Phys, 1976, 47(5): 1762-1770.
[3]  Munson D E, Lawrence R J. Dynamic deformation of polycrystalline alumina [J]. J Appl phys, 1979, 50(10): 6272-6282.
[4]  Li P, Li D H, Ning J G, et al. Dynamic response of polycrystalline alumina under shock loading [J]. Chinese Journal of High Pressure Physics, 2002, 16(1): 22-28. (in Chinese)
[5]  李平, 李大红, 宁建国, 等. 冲击载荷下Al2O3陶瓷的动态响应 [J]. 高压物理学报, 2002, 16(1): 22-28.
[6]  Espinosa H D, Raiser G, Clifton R J, et al. Experimental observations and numerical modeling of inelasticity in dynamically loaded ceramics [J]. J Hard Mater, 1992, 3(3-4): 285-313.
[7]  Tang Z P, Xu S L, Dai X Y, et al. S-wave tracing technique to investigate the damage and failure behavior of brittle materials subjected to shock loading [J]. Int J Impact Engineering, 2005, 31(9): 1172-1191.
[8]  Tang Z P, Hu X J, Liao X L, et al. An experimental facility for measuring longitudinal and shear waves with dual magnetic fields [J]. J Exp Mech, 2000, 15(1): 16-21. (in Chinese)
[9]  唐志平, 胡晓军, 廖香丽, 等. 双磁场IMPS粒子速度测试系统 [J]. 实验力学, 2000, 15(1): 16-21.
[10]  Xu S L, Zhang K, Zheng W, et al. Experimental study of impact performance of Al2O3 microvoid ceramics with high porosity [J]. J Exp Mech, 2008, 23(6): 525-532. (in Chinese)
[11]  徐松林, 张侃, 郑文, 等. 高孔隙率Al2O3 微孔陶瓷冲击性能实验研究 [J]. 实验力学, 2008, 23(6): 525-532.
[12]  Xu S L. Investigation on the S-wave tracing technique and the behavior of cementitious composites under combining compression and shear impact loading [R]. Hefei: University of Science and Technology of China, 2003. (in Chinese)
[13]  徐松林. S波跟踪技术与水泥基复合材料压剪动特性研究 [R]. 合肥: 中国科学技术大学, 2003.
[14]  Xu S L, Tang Z P, Zhang X H. Dynamic shear properties of steel fiber reinforced cement under combined pressure and shear impact loading [J]. Engin Mech, 2006, 23(5): 139-146. (in Chinese)
[15]  徐松林, 唐志平, 张兴华. 钢纤维增强水泥砂浆压剪联合冲击下动态剪切性能 [J]. 工程力学, 2006, 23(5): 139-146.
[16]  Xu S L, Tang Z P, Hu X J, et al. Experimental investigation on dynamic properties of the polypropylene micro-fiber reinforced cement(FCEM) under impact loading [J]. Explosion and Shock Waves, 2004, 24(3): 251-260. (in Chinese)
[17]  徐松林, 唐志平, 胡晓军, 等. 聚丙烯短微纤维增强水泥砂浆冲击特性研究 [J]. 爆炸与冲击, 2004, 24(3): 251-260.
[18]  Xi D Y, Xu S L. Fundamental of Rock Physics [M]. Hefei: Publishing House of University of Science and Technology of China, 2012 (in Chinese)
[19]  席道瑛, 徐松林. 岩石物理学基础 [M]. 合肥: 中国科学技术大学出版社, 2012.
[20]  Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design [J]. Q Appl Math, 1952, 10(2): 157-165.
[21]  Dimaggio F L, Sandler I S. Material models for granular soils [J]. J Eng Mech Div, 1971, 97: 935-950.
[22]  Abduljauwad S N, Al-Buraim I M, Al-Ghamedy H N. Mixed hardening, three-invariants dependent cap model [J]. J Eng Mech, 1992, 118(3): 620-637.
[23]  Aubertin M, Li L. A porosity-dependent inelastic criterion for engineering materials [J]. Int J Plast, 2004, 20(12): 2179-2208.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133