全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金属材料微扰动增长问题的数值模拟研究

DOI: 10.11858/gywlxb.2013.05.020, PP. 778-784

Keywords: 微扰动,动态本构关系,数值模拟,光滑粒子方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属材料微扰动增长过程包含了材料大变形、高压及高应变率加载等复杂材料动态响应过程。改进了黎曼解光滑粒子法,并采用改进的光滑粒子法结合有限元方法,对不同初始扰动的增长过程进行了数值模拟,计算结果与实验结果符合较好。计算结果表明,在不同初始扰动下,扰动侧部变形的应变率存在明显差异,并且扰动增长过程受屈服强度的影响较大。该方法可以作为研究金属材料微扰动增长过程的数值方法之一。

References

[1]  Batten P, Clarke N, Lambert C, et al. On the choice of wavespeeds for the HLLC Riemann solver [J]. SIAM J Sci Comput, 1997, 18: 1553-1570.
[2]  Shen Z J, Lü G X, Shen L J. Riemann solver and artificial viscosity in SPH [J]. Mathematica Numerica Sinica, 2006, 28(4): 433-448. (in Chinese)
[3]  沈智军, 吕桂霞, 沈隆钧. SPH方法中的Riemann解与人工粘性 [J]. 计算数学, 2006, 28(4): 433-448.
[4]  Hu X M, Pan H, Wu Z H. Numerical simulation of the detonation process of cracked high explosives with different widths of air gap [J]. Transactions of Beijing Institute of Technology, 2009, 29(Suppl 1): 114-118. (in Chinese)
[5]  胡晓棉, 潘昊, 吴子辉. 间隙宽度对于炸药爆轰过程的影响 [J]. 北京理工大学学报, 2009, 29(增刊1): 114-118.
[6]  Zhu J S, Hu X M, Wang P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400-423. (in Chinese)
[7]  朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400-423.
[8]  Johnson G R, Cook W H. A constitutive model and data for metals subiected to large strain rates and high temperatures [C]//Proc 7th Int Symp Ballistics. Netherlands: Am Def Prep Org(ADPA), 1983: 54l-548.
[9]  Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for extreme loading conditions [J]. J Appl Phys, 2003, 93(1): 211.
[10]  Huang H, Asay J R. Reshock and release response of aluminum single crystal [J]. J Appl Phys, 2007, 101(6): 063550.
[11]  Chen D N, Fan C L, Xie S G, et al. Study on constitutive relations and spall models for oxygen-free high-conductivity copper under planar shock tests [J]. J Appl Phys, 2007, 101(6): 063532.
[12]  Barnes J F, Blewett P J, McQueen R G, et al. Taylor instability in solids [J]. J Appl Phys, 1974, 45: 727-732.
[13]  Piriz A R, LopezCela J J, Cortazar O D, et al. Rayleigh-Taylor instability in elastic solids [J]. Phys Rev E, 2005, 72: 056313.
[14]  Park H S, Remington B A, Becker R C, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate [J]. Phys Rev Lett, 2010, 104: 135504.
[15]  Lindquist M J, Cavallo R M, Lorenz K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [C]//10th International Workshop on the Physics of Compressible Turbulent Mixing. Paris, France, 2006.
[16]  Atchison W L, Zocher M A, Kaul A M. Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems [J]. Russ J Phys Chem B, 2008, 2(3): 387-401.
[17]  Monaghan J J. Smoothed particle hydrodynamics [J]. Annual Rev Astron Astrophys, 1992, 30: 543-574.
[18]  Chen J K, Beraun J E, Jih C J. Completeness of corrective smoothed particle method for linear elastodynamics [J]. Comput Mech, 1999, 24: 273-285.
[19]  Dilts G A. Moving-least-squares-particle hydrodynamics Ⅰ: Consistency and stability [J]. Int J Impact Eng, 1999, 44: 1115-1155.
[20]  Dilts G A. Moving least squares particle hydrodynamics Ⅱ: Conservation and boundaries [J]. Int J Impact Eng, 2000, 48: 1503-1524.
[21]  Parshikov A N, Medin S A, Loukashenko I I, et al. Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities [J]. Int J Impact Eng, 2000, 24: 779.
[22]  Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate [J]. J Appl Phys, 1980, 51: 1498-1504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133