全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

爆轰波在60°光滑弯管中传播的动力响应过程研究

DOI: 10.11858/gywlxb.2013.05.006, PP. 691-698

Keywords: 附加Runge-Kutta方法,反射,衍射,弯管,气相爆轰

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用显-隐式附加Runge-Kutta方法和5阶精度的加权本质无震荡(WENO)格式以及基元反应模型,对规则爆轰波在60°弯管中的传播过程进行了数值模拟研究。基元反应模型采用9组分48反应模型,反应气体为满足化学当量比的H2-O2混合气体,并用氩气稀释。数值模拟结果表明:弯管上壁面的衍射效应使得爆轰压力减小,胞格尺寸增大并伴有局部熄爆;下壁面的反射使得马赫杆后区域压力增大、温度升高,胞格尺寸减小;在弯管段,爆轰胞格的规则性很差,离开弯管大约0.45m后恢复规则性;由于拐弯角的影响,爆轰波在下壁面存在马赫反射和规则反射两种模式;弯管出口端,反射横波受到爆轰波阵面固有横波的追赶压缩,形成了一道向上运动的爆轰横波。

References

[1]  Oran E S, Boris J P. Numerical Simulation of Reactive Flow [M]. New York: Elsevier Science Publishing, 1987.
[2]  Nettleton M A. Recent work on gaseous detonation [J]. Shock Waves, 2002, 12(1): 3-12.
[3]  Thomas G O, Williams R L. Detonation interaction with wedges and bends [J]. Shock Waves, 2002, 11(6): 481-492.
[4]  Deiterding R. A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains [J]. Comput Struct, 2009, 87(11): 769-783.
[5]  Frolov S M, Aksenov V S, Shamshin I O. Reactive shock and detonation propagation in U-bend tubes [J]. J Loss Prev Process Ind, 2007, 20(4): 501-508.
[6]  Uchida M, Suda T, Fujimori T, et al. Pressure loading of detonation waves through 90-degree bend in high pressure H2-O2-N2 mixtures [J]. Proc Combust Inst, 2011, 33(2): 2327-2333.
[7]  Westbrook C K. Chemical kinetics of hydrocarbon oxidation in gaseous detonations [J]. Combust Flame, 1982, 46: 191-210.
[8]  Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes [J]. J Comput Phys, 1996, 126(1): 202-228.
[9]  Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes [J]. J Comput Phys, 1994, 115(1): 200-212.
[10]  Alexander R, Coyle J J. Runge-Kutta methods and differential-algebraic systems [J]. SIAM J Numer Anal, 1990, 27(3): 736-752.
[11]  Hosea M E, Shampine L F. Analysis and implementation of TR-BDF2 [J]. Appl Numer Math, 1996, 20(1): 21-37.
[12]  Alexander R. Diagonally implicit Runge-Kutta methods for stiff ODE's [J]. SIAM J Numer Anal, 1977, 14(6): 1006-1021.
[13]  Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems [M]. 2nd ed. Berlin: Springer-Verlag, 1991.
[14]  Kennedy C A, Carpenter M H. Additive Runge-Kutta schemes for convection-diffusion-reaction equations [J]. Appl Numer Math, 2003, 44(1-2): 139-181.
[15]  Li H, Ben-Dor G. Reconsideration of pseudo-steady shock wave reflections and the transition criteria between them [J]. Shock Waves, 1995, 5(1-2): 59-73.
[16]  Guo C M, Zhang D L, Xie W. The Mach reflection of a detonation based on soot track measurements [J]. Combust Flame, 2001, 127(3): 2051-2058.
[17]  Nettleton M A. Gaseous Detonation: Their Nature, Effects and Control [M]. London: Chapman and Hall, 1987.
[18]  Hornung H. Regular and Mach reflection of shock waves [J]. Annu Rev Fluid Mech, 1986, 18: 33-58.
[19]  Qu Q, Khoo B C, Dou H S, et al. The evolution of a detonation wave in a variable cross-sectional chamber [J]. Shock Waves, 2008, 18(3): 213-233.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133