全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

周期性铜线密排结构的冲击压缩特性研究

DOI: 10.11858/gywlxb.2014.03.011, PP. 331-338

Keywords: 冲击加载,铜线密排结构,光滑粒子流体动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

对铜线密排结构材料开展了一维平面应变冲击压缩实验与数值模拟研究。利用激光位移干涉仪测量了样品/窗口界面速度剖面,获取了有效的结构冲击压缩实验数据。从样品界面速度曲线可以推断,密排结构冲击压缩时没有形成致密结构,在卸载过程中发生了分层。应用光滑粒子流体动力学方法(SPH)建立了平面铜线密排结构的三维计算模型,计算得到样品冲击加载下的压缩特性,实验和数值模拟得到的界面速度和压力结果吻合较好,为后续开展柱面铜线密排结构的冲击压缩过程研究奠定了基础。

References

[1]  Hawke R S, Duerre D E, Huebel J G, et al. Method of isentropically compressing materials to several megabars [J]. J Appl Phys, 1972, 43(11): 2734-2741.
[2]  Boriskov G V, Belov S I, Bykov A I, et al. Conductivity and permittivity of hydrogen under isentropic magnetic compression up to 3 Mbar [J]. J Low Temp Phys, 2010, 159(1): 307-310.
[3]  Bykov A I. VNIIEF achievements on ultra-high magnetic fields generation [J]. Phys B, 2002, 294(2): 574-578.
[4]  Bykov A I, Dolotenko M I, Kolokol′chikov N P, et al. The cascade magnetocumulative generator of ultra-high magnetic fields-A reliable tool for megagauss physics [J]. Physica B, 1996, 216(1): 215-217.
[5]  Zhang Z, Zhao H, Yu H. Experiments and numerical simulations of concrete dynamic mechanical properties [J]. Chinese Journal of High Pressure Physic, 2011, 25(6): 533-538. (in Chinese)
[6]  张柱, 赵慧, 于晖. 混凝土材料动态力学性能实验与数值模拟研究 [J]. 高压物理学报, 2011, 25(6): 533-538.
[7]  Hu S S, Wang D R, Liu J F. Experiment study on dynamic mechanical behavior of concrete materials [J]. Engineering Mechanics, 2001, 8(5): 115-126. (in Chinese)
[8]  胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的试验研究 [J]. 工程力学, 2001, 8(5): 115-126.
[9]  Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials [J]. Composites, 1996, 27(12): 1123-1131.
[10]  Choi H Y. Damage in grahite-expoxy laminated composites due to low-velocity impact [D]. ProQuest Dissertations and Thesises, 1991.
[11]  Ramadhan A A, Abu Talib A R, Mohd Rafie A S, et al. High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels [J]. Mater Des, 2013, 43(2): 307-321.
[12]  Silvestrov V V, Plastinin A V, Gorshkov N N. Hypervelocity impact on Laminate composite panels [J]. Int J Impact Eng, 1995, 17: 751-762.
[13]  Ryan S, Schaefer F, Riedel W. Numerical simulation of hypervelocity impact on CFRP/Al HC SP spacecraft structures causing penetration and fragment ejection [J]. Int J Impact Eng, 2006, 33: 703-712.
[14]  Chen J K, Allahdadi F A, Carney T C. High-velocity impact of graphite/epoxy composite laminates [J]. Compos Sci Technol, 1997, 57(9/10): 1369-1379.
[15]  Clegg R A, White D M, Riedelb W, et al. Hypervelocity impact damage prediction in composites: Part I-material model and characterisation [J]. Int J Impact Eng, 2006, 33: 190-200.
[16]  Zhao S C. Hypervelocity impact modeling and calculation of two secondary development based on AUTODYN [D]. Mianyang: China Academy of Engineering Physics, 2012. (in Chinese)
[17]  赵士操. 基于AUTODYN二次开发的超高速碰撞建模与计算 [D]. 绵阳: 中国工程物理研究院, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133