全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

大跨屋盖结构风振响应参数灵敏度分析

, PP. 171-177

Keywords: 大跨屋盖结构,风振响应,参数灵敏度,不确定性,多次采样风洞试验

Full-Text   Cite this paper   Add to My Lib

Abstract:

对典型大跨屋盖结构风振响应开展参数灵敏度研究,目的是定量评估各种不确定因素对结构风振响应不确定性的贡献率,获得不确定性在风荷载与风振响应间的传递规律。首先结合Sobol'方差分解法和拉丁超立方抽样技术建立适用于大跨屋盖结构的全局灵敏度分析方法,通过多次采样风洞试验获得大量脉动风荷载时程,作为灵敏度分析的输入变量。合理建立结构参数概率统计模型,分别应用局部和全局灵敏度分析方法对典型大跨屋盖结构极值风振响应进行了参数灵敏度分析,研究发现:多个参数共同随机变化时,结构极值风振响应近似服从广义极值分布;结构风振响应的不确定性主要受风荷载不确定性控制;结构风振响应的参数灵敏度与共振响应在总响应中的比重有关,共振响应占比越大,结构对风荷载越敏感。

References

[1]  Davenport A G. Past, present and future of wind engineering [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12): 1371―1380.
[2]  Saltelli A, Chan K, Scott M. Sensitivity analysis, probability and statistics series [M]. New York: John Wiley & Sons, 2000: 15―17.
[3]  Manache G, Melching C S. Identification of reliable regression-and correlation―based sensitivity measures for importance ranking of water―quality model parameters [J]. Environmental Modelling and Software, 2008, 23(5): 549―562.
[4]  Sanayei M, Imbaro G R. Structural model updating using experimental static measurements [J]. Journal of Structural Engineering, ASCE, 1997, 123(6): 792―798.
[5]  Morris M D. Factorial sampling plans for preliminary computational experiments [J]. Technometrics, 1991, 33(2): 161―174.
[6]  Lu Y C, Mohanty S. Sensitivity analysis of a complex, proposed geologic waste disposal system using the Fourier amplitude sensitivity test method [J]. Reliability Engineering and System Safety, 2001, 72(3): 275―291.
[7]  Sobol I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates [J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271―280.
[8]  Sobol I M. Sensitivity estimates for nonlinear mathematical models [J]. Mathematical Modeling and Computational Experiment, 1993, 1(4): 407―414.
[9]  戴鸿哲, 王伟. 结构可靠性灵敏度分析的低偏差抽样方法[J]. 工程力学, 2010, 27(1): 104―108. Dai Hongzhe, Wang Wei. Low-discrepancy sampling method for structural reliability sensitivity analysis [J]. Engineering Mechanics, 2010, 27(1): 104―108. (in Chinese)
[10]  Helton J C, Davis F J, Johnson J D. A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling [J]. Reliability Engineering and System Safty, 2005, 89(3): 305―330.
[11]  赵雷, 陈虬. 随机有限元动力分析方法的研究进展[J]. 力学进展, 1999, 29(1): 9―18. Zhao Lei, Chen Qiu. Advances of dynamic response analysis based on stochastic finite element method [J]. Advances in Mechanics, 1999, 29(1): 9―18. (in Chinese)
[12]  GB 50068-2001, 建筑结构可靠度设计统一标准[S]. 北京: 中国计划出版社, 2002. GB 50068-2001, Unified standard reliability design of building structures [S]. Beijing: China Planning Press, 2002. (in Chinese)
[13]  沈世钊, 陈昕. 网壳结构稳定性[M]. 北京: 科学出版社, 1999: 52―59. Shen Shizhao, Chen Xin. Stability of reticulated shells [M]. Beijing: Science Press, 1999: 52―59. (in Chinese)
[14]  Kareem A. Reliability of wind-sensitive structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(3): 495―514.
[15]  JGJ 61-2003, 网壳结构技术规程[S]. 北京: 中国建筑工业出版社, 2003.
[16]  JGJ 61-2003, Technical specification for latticed shells [S]. Beijing: China Architecture & Building Press, 2003. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133