Machenzie J K. The elastic constants of solid containing spherical holes [J]. Proceedings of Physical Society, 1950, 63(1): 808―813.
[2]
Kumar R, Bhattacharjee B. Porosity, pore size distribution and in situ strength of concrete [J]. Cement and Concrete Research, 2003, 33(2): 155―164.
[3]
杜修力, 金浏. 考虑孔隙及微裂纹影响的混凝土宏观力学特性研究 [J]. 工程力学, 2012, 29(8): 101―107. Du Xiuli, Jin Liu. Research of the influence of pores and micro-cracks on the marcro-mechanical properties of concrete [J]. Engineering Mechanics, 2012, 29(8): 101―107. (in Chinese)
[4]
马怀发, 陈厚群, 黎保琨. 应变率效应对混凝土动弯拉强度的影响[J]. 水利学报, 2005, 36(1): 69―76. Ma Huaifa, Chen Houqun, Li Baokun. Influence of strain rate effect on dynamic bending strength of concrete [J]. Journal of Hydraulic Engineering, 2005, 36(1): 69―76. (in Chinese)
[5]
杜修力, 田瑞俊, 彭一江. 预静载对全级配混凝土梁动弯拉强度的影响[J]. 地震工程与工程振动, 2009, 29(2): 98―102. Du Xiuli. Tian Ruijun, Peng Yijiang. Influence of initial static loading on dynamic bending strength of fully- graded concrete beam [J]. Journal of Earthquake Engineering and EngineeringVibration, 2009, 29(2): 98―102. (in Chinese)
[6]
马怀发, 王立涛, 陈厚群, 等. 混凝土动态损伤的滞后特性[J]. 水利学报, 2010, 41(6): 659―664. Ma Huaifa, Wang Litao, Chen Houqun, et al. Mechanism of dynamic damage delay characteristic of concrete [J]. Journal of Hydraulic Engineering, 2010, 41(6): 659―664. (in Chinese)
[7]
Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structure [J]. Journal of Engineering Mechanics, 1988, 124(8): 892―900.
[8]
金浏, 杜修力. 加载速率及其突变对混凝土压缩破坏影响的数值研究[J]. 振动与冲击,2014, 34(19): 187―193. (待刊) Jin Liu, Du Xiuli. Meso-scale numerical analysis of the effect of loading rate on the tensile failure pattern of concrete [J]. Journal of Vibration and Shock, 2014, 34(19): 187―193. (in Chinese)
[9]
Du Xiuli, Jin Liu, Ma Guowei. Numerical simulation of dynamic tensile failure of concrete at meso-scale [J]. International Journal of Impact Engineering, 2014, 66(1): 5―17.
[10]
Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressure: I. Experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869―886.
[11]
Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425―450.
[12]
Tedesco J W, Hughes M L, Ross C A. Numerical simulation of high strain rate concrete compression testes [J]. Computers and Structures, 1994, 51(1): 65―77.
[13]
Park S W, Xia Z, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation [J]. International Journal of Impact Engineering, 2001, 25(9): 887―910.
[14]
Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research, 2011, 41(3): 339―358.
[15]
Zhao H, Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains [J]. International Journal of Solids and Structures, 1996, 33(23): 3363―3375.
[16]
Hentz S, Donźe F V, Daudeville L. Discrete element modeling of concrete submitted to dynamic loading at high strain rates [J]. Computers and Structures, 2004, 82(29/30): 2509―2524.
[17]
Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735―739.
[18]
Zhou X Q, Hao H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures, 2008, 86(21/22): 2013―2026.
[19]
Kwan AKH, Wang Z M, Chan H C. Mesoscopic study of concrete II: nonlinear finite element analysis [J]. Computers and Structures, 1999, 70(5): 545―556.
[20]
Wriggers P, Moftah S O. Mesoscale models for concrete: Homogenisation and damage behavior [J]. Finite Elements in Analysis and Design, 2006, 42(7): 623―636.
[21]
DL/T 5150-2001, 水工混凝土试验规程[S]. 北京: 中国电力出版社, 2002. DL/T 5150-2001, Test code of hydraulic concrete [S]. Beijing: China Electric Power Press, 2002. (in Chinese)